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Introduction.

Automorphisms of complex K3 surfaces have been widely studied in the last years, in
particular also for the recent relation with the Bloch conjecture, see e.g. 28], [27]|. In this
thesis, we investigate (purely) non-symplectic automorphisms of order n, i.e. automor-
phisms that multiply the non-degenerate holomorphic two form by a primitive nth root of
unity.

The study of non-symplectic automorphism of prime order was completed by Nikulin in
[9] in the case of involutions, and more recently by Artebani, Sarti and Taki in several pa-
pers |3, 2, 16| for the other prime orders. The study of non-symplectic automorphisms of
non-prime order turns out to be more complicated. Indeed, in this situation the "generic”
case does not imply that the action of the automorphism is trivial on the Picard group
[25, Section 11]. In the paper [14], Taki completely describes the case when the order of
the automorphism is a prime power and the action is trivial on the Picard group. If we
consider non-symplectic automorphisms of order 2¢, then by results of Nikulin we have
0 <t <5, and by a recent paper by Taki [15] there is only one K3 surface that admits
a non-symplectic automorphism of order 32. Some further results in this direction are
contained in a paper by Schiitt 7] in the case of automorphisms of a 2-power order and in
a paper by Artebani and Sarti [2], in the case of order 4. In this last paper, the hypothesis
of trivial action on the Picard group is disregarded.

This thesis mainly deals with purely non-symplectic automorphisms o of order eight
and sixteen, which are quite unexplored, under the assumption that their fourth power o
and eighth power ¢® is the identity on the Picard lattice. By the Torelli type theorem,
this holds for the generic element of the family of K3 surfaces carrying an order 8 and
16 non-symplectic automorphism with given action on its second cohomology group. The
fixed locus Fix(o) of such an automorphism o is the disjoint union of smooth curves and
points.

In the first part of the thesis, we classify the non-symplectic automorphisms o of
order eight on a K3 surface when the fixed locus of its fourth power o# contains a curve
of positive genus. More precisely we show that the genus of the fixed curve by o is at
most one. After that, we study the case of the fixed locus of o that contains at least a
curve and all the curves fixed by its fourth power o are rational. Finally, we investigate
the case when o and its square o2 act trivially on the Néron-Severi group. We classify all
the possibilities for the fixed locus of o and o2 in these three cases. We obtain a complete
classification for the non-symplectic automorphisms of order 8 on a K3 surface. More
precisely, let X be a K3 surface, wx a generator of H>°(X), ¢ an order 8 automorphism
such that oc*wyxy = (swx, where (g denotes a primitive 8th root of unity. We denote by
r,l,m and m; the rank of the eigenspaces of o* in H?(X,C) relative to the eigenvalues

3



4 Introduction

1,—1,4 and (g respectively. We also denote by k£ the number of smooth rational curves
fixed by o, by N the number of isolated points in Fix(o), and by N’ the number of fixed
points by o contained in a curve C' C Fix(c*) of genus g > 1. Finally, we denote by 2a
the number of exchanged smooth rational curves by o and fixed (that means pointwisely
fixed) by o2. Thus we prove the following result.

Theorem 0.0.1. Let o be a purely non-symplectic order eight automorphism on a K3
surface X such that o*' acts identically on Pic(X). Then:

no7+mn3e =2+4a, nas+n27—n3e =2+ 2aq, N=24r—1-2a.

Here we denote by n; ; the number of isolated points of type PHI which are fized by o, and
by a = ECCFiX(U) 1 — g(C). Moreover, if Fiz(c*) contains a curve C of genus g(C) = 1,
then the following possibilities hold.

o If Fiz(o) contains the elliptic curve C, then

(k,N,a,C") = (0,2,0,1y) , (0,4,1,IV*).

e If Fiz(0?) contains the elliptic curve C and there is no elliptic fived curve by o, then

(k,N,a,N ,C") = (0,2,0,0, 1), (0,6,0,4, 1), (0,4,0,0,IV*), (1,10,0,4, IV*).

o If o' for i =1,2 does not fiz an elliptic curve, then
(k,N,CL,N/,C/) = (07270727-[0)7 (17870727-[8)7 (07670727-[8)7 (07271727-[8)7 (07270727-[8)7
(2,14,0,2, I15), (0,6,1,2,15), (0,2,2,2,15), (0,2,0,2, I15), (0,4,0,0,IV"),

where C' is another preserved fiber of the induced o—invariant elliptic fibration that has
the curve C as a fiber.

We prove Theorem 0.0.1 in several steps, mainly in Theorem 2.3.2; 2.3.3 and 2.3.4.
We give examples showing the existence of all these cases except four of them in examples
2.8.1, 2.8.2, 2.8.3 and the Example 2.8.4 where we study a translation of order two acting
on a generic fiber of an elliptic fibration.

If o* acts as the identity on Pic(X) (i.e. [ =m = 0), then the fixed locus of ¢ contains
points and at least a smooth rational curve, the rank of Pic(X) is either 6 or 14 and we
have the following possibilities for (Pic(X), N, k):

(U @ Dy,6,1), (U(2)® Dyg,6,1) or (U D Dy Eg,12,2).

We prove this result in Theorem 2.4.1 and Theorem B.0.9. More generally, if the order
four automorphism o2 acts trivially on Pic(X) and [ # 0, i.e. the action of o on Pic(X)
is not trivial, then the invariant of the fixed locus Fix (o) are given in Table 2.4 and Table
2.3 for the case g = 1. We construct several examples corresponding to several cases with
the assumption m = 0 in examples 2.3.4, 2.8.5, 2.8.6, 2.8.7, 2.8.8, 2.8.9 and 2.8.10.
Finally, we show the following theorem, where we use the same notation as before.

Theorem 0.0.2. Let o be a purely non-symplectic order eight automorphism on a K3
surface X such that o' acts identically on Pic(X). Then the following hold.



o [f Fiz(o) contains a curve then its genus is either 0 or 1. Moreover, let g = g(C') be
the genus of the curve C C Fiz(ot). Then

— if C C Fiz(0?) then g =2,k =0,N =4 and r = 3,13.
— if C ¢ Fin(0?) andk > 0, thenk = 1 and (g, N,r) = (2,10,13), (3,6,7), (3,6,8).

o If Fiz(c) contains a curve of genus g = 0 and all the curves fived by o are rational,
then we have only one possibility (k, N,a,r) = (1,10,0,13).

o [f Fiz(o) is zero-dimensional, then it contains at most 6 points. If m > 0, then the
possible invariants of Fix(o) are given in Table 2.8 and we have 2 < r < 9, a =
0,1, g <5, where g is the highest genus of a curve fired by o*.

We prove this result in Theorem 2.5.1, 2.5.6, 2.6.1 and 2.7.1. In Example 2.8.9 we give
two examples corresponding to the case g = 0,k > 0 and one case in Table 2.8 for k = 0.

In the second part of the thesis, we classify K3 surfaces with non-symplectic
automorphism of order 16 in full generality.
Since Euler’s totient function value of 16 must divide the rank of the transcendental lattice
(see [8, Theorem 3.1]) the rank of the Picard group can only equal 6 or 14. More precisely,
let X be a K3 surface, wx a generator of H*?(X), o an order 16 automorphism such that
oc*wx = (1ewx, where (16 denotes a primitive 16th root of unity. We first show that if the
fixed locus of o contains a curve then its genus is zero (Proposition 3.2.3). We also show
that the fixed locus of o* always contains at least a curve of genus 0 or 1 (Proposition
3.1.10).
When 1k Pic(X) = 6 and o® acts trivially on Pic(X) (this is the generic case) we have the
following number of isolated fixed points N and fixed rational curves k for o (Theorem
3.3.2):

(Pic(X), N, k) = (U @ Dy4,6,1), or (U(2) ® D4,4,0).

In the first case, the action of ¢ is trivial on Pic(X) but not in the second case. If o®
acts trivially on Pic(X) (this is the generic case), we have rk Pic(X) = 14 and o fixes an
elliptic curve C, then o leaves C' invariant (but C' is not pointwise fixed by o by Proposition
3.2.3) and the induced o-invariant elliptic fibration has a reducible fiber of type IV* (see |2,
Theorem 3.1]). The number of isolated fixed points and fixed rational curves are as follows:
(N,k) =(8,1) or (6,0). In the first case o preserves each component of the fiber IV* and
in the second case it acts as a reflection on it. In any case the action of ¢ is nontrivial on
Pic(X) (see Theorem 3.2.2). Finally if o® acts trivially on Pic(X), rk Pic(X) = 14 and
Fix(c*) contains at least a curve of genus zero we have three cases with (Pic(X), N, k)
equal to:

(U ® Dy ® Eg, 12, 1), (U(Q) ® Dy @ Eg, 4, O) or (U(2> ® Dy P Eg, 10, 1)

In these three cases the action of o is not trivial on Pic(X), (Theorem 3.4.1). This in
particular shows that there does not exist a K3 surface X with Picard number 14 with an
automorphism of order 16 acting non-symplectically on it and trivially on Pic(X). This
corrects a small mistake in the paper [14], where the author claims that such a K3 surface
exists.

We construct the K3 surfaces in the Examples 3.5.1, 3.5.2, 3.5.3 (some of the examples
are described in [14] and [26]). For the proofs of the Theorems 3.2.2, 3.3.2, 3.4.1, we use
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Lefschetz formulas and results on non-symplectic involutions and on non-symplectic order
four automorphisms, which are contained in |2|, [14]. We also use some results (Lefschetz
formulas, local action at the fixed points) on non-symplectic automorphisms of order eight.

The structure of this thesis is as follows. In Chapter 1, we introduce basic facts about
lattices, K3 surfaces and non-symplectic automorphism of finite order on K3 surfaces, and
about elliptic fibrations over K3 surfaces.

In Chapter 2, we classify the non-symplectic automorphisms o of order eight on a K3
surface X. In Section 2.1, we give a general description of the fixed locus of . By means
of Lefschetz’s formulas, we provide relations between the invariants N, k, g and the ranks
of the eigenspaces of o* on the lattice H?(X,C). In Section 2.2, we investigate elliptic
fibrations m : X — P! such that o fixes a curve C of genus g > 1 and Pic(X) = S(c?) =
Uo L.

In Section 2.3, we suppose that o fixes an elliptic curve C' and we describe the singular
fibers of the elliptic fibration with fiber C' and the corresponding structure of the fixed
locus of 0. Here we distinguish the following three cases.

e The elliptic curve C is fixed by o (Theorem 2.3.2).
e The elliptic curve C is fixed by o2 but is not contained in Fix(c) (Theorem 2.3.3).
e The elliptic curve C is only fixed by o4 (Theorem 2.3.4).

In Section 2.4, we assume that o2 acts as the identity on S(o?) = Pic(X), i.e. m = 0.
In Section 2.5 and 2.6, we suppose that o fixes at least one rational curve and we classify
the cases when the fixed locus of ¢ contains a curve of genus g > 1 or it contains only
rational curves. In Section 2.7, we consider the case when o fixes only isolated points. In
Section 2.8, we give several examples corresponding to several cases in the classification of
non-symplectic automorphisms of order eight. We construct all these examples by elliptic
fibrations over K3 surfaces.

In Chapter 3, we classify K3 surfaces with non-symplectic automorphisms of order
16. In Section 3.1, we give a general description of the fixed locus of ¢ and we recall
some useful facts. We show more precisely that rk Pic(X) = rk S(0®) is either 6 or 14.
In Section 3.2, we suppose that o® fixes an elliptic curve C. In Section 3.3, we study the
case when Pic(X) = S(0%) has rank 6. In Section 3.4, we assume that the rank of the
Néron-Severi group is 14. Finally, in Section 3.5 we give an example for each case in the
classification of the non-symplectic automorphisms of order 16.

Finally, in Appendix A we classify all quartic surfaces that are affinely invariant for the
action of some automorphism of order 8 of P? acting non-symplecticaly on the quartic. In
Appendix B, we assume that [ = 0, so that 7,2 = r (i.e. o* acts as the identity on S(0?)).
More precisely, we study the case when o* is the identity on the Picard lattice and we give
an independent proof (not based on the classification of order four automorphism |[2]|) of
[14, Proposition 5.5]. In Appendix C, we give the tables for the complete classification of
the non-symplectic automorphisms of order 8 on a K3 surface. These show the invariants
of non-symplectic automorphisms of order 8 in all the possible cases. Moreover, they also
show the cases when we have an example or when there is not an example (and we give
the number of examples if we have more than one).



Chapter 1

Preliminaries

1.1 Lattices.
A lattice L is a free Z-module of finite rank with a Z-valued symmetric bilinear form:
b:LxL— Z.

An isomorphism of Z—modules preserving the bilinear form is called isometry. The group
of the isometries of L is indicated with O(L).

The lattice L is said to be even if the quadratic form associated to b takes only even
values. Otherwise, i.e. if the quadratic form associated to b takes only odd values, it is
called odd.

The discriminant d(L) of L is the determinant of a matrix associated to b, and L
is said to be unimodular if d(L) = £1. If L is non-degenerate, i.e. d(L) # 0, then
the signature of L is a pair (s4,s_) of integers, where s1 denotes the multiplicity of the
eigenvalue £1 for the quadratic form on L ® R; L is called positive-definite (negative-
definite) if the quadratic form associated to b takes only positive (negative) values. If the
signature of the lattice L is (1,rank(L) — 1), then L is called hyperbolic.

We define the dual of the lattice L to be:

LY = Homz(L,Z) 2 {ve L®zQ | b(v,z) € Z for all z € L}.

There is a natural embedding, the correlation morphism, of L in LY via ¢+ b(c, —).
The discriminant group of a lattice L is the group Ay = LY /L. Let A be a finite abelian
group. The length of A, I(A), is the minimum number of generator of A.

Let b : Ax A — Q/Z be a symmetric even bilinear form. It induces a quadratic form ¢
on the group A such that:

e g: A— Q/2Z,
e g(na) = n%q(a) for all n € Z and a € A.
o gla+d)—qa) —q(a) =2b(a,a’) mod 2.

Let L be a non-degenerate even lattice with bilinear form b. The Q-linear extension of b
to LV is a symmetric bilinear form

LV x LY — Q.
7



8 CHAPTER 1. PRELIMINARIES

This form induces a symmetric bilinear form on the discriminant group of L, namely :
b : LY/L x LY /L — Q/Z.
Let g;, be the quadratic form associated to by, :
qr: LY/L — Q/2Z.

We call g7, the discriminant form of the lattice L.

We denote by L(m) the lattice which coincides with L as Z-module and with bilinear
form multiplied by m with respect to the bilinear form of L. By L®* we denote the lattice
with bilinear form which is the orthogonal sum of k copies of the bilinear form b of L.
Let (L,b) and (M, b) be two lattices such that M C L. The lattice M*" is the sublattice
of L given by

M*YE = {1 € L | b(l,m) =0 for each m € M},

Proposition 1.1.1. (see [22, Ch I, Lemma 2.1])
Let L be a non degenerate lattice, and let ¢ : L — LV be the correlation morphism of the
lattice L. Then we have the following:

o The index of ¢(L) in LV is |d(L)|.
o If M is a sublattice of the lattice L with rank L = rank M, then the square of the
index of M in L 1s:
d(M)
L:M)P?=|——|.
s =[G

Proposition 1.1.2. (see [10, Corollary 1.13.3])
Let L be an even lattice with signature (s, s_) and discriminant form qr. If sy > 0,s_ >0
and [(Ar) <rank (L) — 2, then L is the only lattice with these invariants up to isometry.

Examples :

1) The lattice U is the unique rank two unimodular lattice of signature (1,1), whose

Gram matrix is:
0 1
1 0 /°

2) The lattices Ay, Dy, E; for n > 1,k > 4,7 = 6,7,8 are the even, negative lattices
associated with the Dynikin diagrams of the corresponding types.
The following Table 1.1 shows the form of Dynkin diagrams, the rank and the deter-
minant of each lattice.

The lattices A,, Dy, E; for n > 1,k > 4,4 = 6,7,8 are the even, negative definite
lattices associated with the Dynkin diagrams of the corresponding types.
The following Table 1.1 shows the form of Dynkin diagrams, the rank and the determinant
of each lattice.



1.1. LATTICES.
name | rank | det associated Dynkin diagram
A, n n+1

Es 6 3
E, 7 2 J~
By 8 1 J

Table 1.1: Dynkin diagram

The Gram matrices associated with these lattices are the following:

2 1
1 -2 1
A, =
1 -2
2 1
1 -2 1
1 -2 1
Ee = 1 -2 1 1
1 -2
1 )

2 0 1
0 -2 1
1 1 -2 1
1 -2 1
Dy, =
1
2 1
1 -2 1
1 -2 1
. B = 1 -2
1
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-2 1
1 -2 1
1 -2 1 1
1 -2 1
By = 1 -2 1
1 -2 1
1 -2
1 -2

Definition 1.1.3. Let p be a prime number. A lattice L is called p-elementary if Ay ~
(Z/pZ)" ; a € Zxo.

Remark 1.1.4. If L is a p-elementary lattice primitively embedded in a unimodular lat-
tice M and LM is its orthogonal complement in M, then it is known that LM is also
p—elementary and p® = |det(L)| = |det(L*-)|.

The following result classifies even, indefinite, p-elementary lattices (see [19]. section
1).

Theorem 1.1.5. An even, indefinite, p-elementary lattice of rank r for p # 2 and r > 2
1s uniquely determined by the integer a.

For p # 2 a hyperbolic p-elementary lattice with invariants a,r exists if and only if the
following conditions are satisfied: a <r, r =0 mod 4 and

for a=0 mod2 r=2 mod4
for a=1 mod2 p=(—1)/>1 mod 4.
Moreover r > a >0, if r 22 mod 8.
Example 1.1.6. (See [4, Section 1] )

e [fp=1 mod 4, then the lattice defined by the following matriz:
_(—+1/2 1

1s negative definite, p-elementary with a = 1.

o I[fp=1 mod 4 then the lattice given by:
_( —-1/2 1
H, = < 1 R

18 hyperbolic, p—elementary with a = 1.

o We return to the lattices in Table 1.1. For a prime number p the A,_1 lattice is a
p—elementary lattice with length a = 1, while the A1, Doy, E7 and Eg lattices are 2-
elementary lattices with a equal to 1,2,1 and 0 respectively. Observe for example that
the lattice A1 @ D?Q @ Eg is a 2-elementary lattice with lengtha =1+2+2+0=25.
Finally, the Ay and FEg lattices in Table 1.1 are 3-elementary lattices.

Remark 1.1.7. An even, indefinite, 2-elementary lattice is determined by the rank r and
the length a and by a third invariant 6 € {0,1}, see [9].
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1.2 K3 surfaces and non-symplectic automorphisms.

Here we introduce basic facts about K3 surfaces, the K3—lattice, the Néron-Severi group
and the transcendental lattice. Then we define the non-symplectic automorphisms of finite
order n on K3 surfaces and we give their main properties.

1.2.1 K3 surfaces.

Definition 1.2.1. A K3 surface is a compact complex surface X with ¢ = h°(X) =0
and Kx ~ 0, where Kx is the canonical divisor on X and ~ is the linear equivalence.

Proposition 1.2.2. (see |22, Ch VIII])
All the K3 surfaces are diffeomeorphic. Moreover, we have that:

o They are all simply connected and their Betti numbers are by = 1,b1 = 0,be = 22.
o All the K3 surfaces are Kdhler surfaces.

e The Hodge numbers of a K3 surface are h*? = h%2 = 1, hlt =20, R0 = p01 =0
and the Euler characteristic is 24.

Proposition 1.2.3. Let X be a K3 surface. Then the Picard and the Néron-Severi group
of X coincide NS(X) ~ Pic(X).

Proof. For the complex surface X the exponential sequence induces the following exact
sequence:

HY(X,7) - H'(X,0x) — Pic(X) 3 H*(X, 7).

Since X is a K3 surface H!'(X,Ox) = 0 and so the morphism ¢; is an injective map.
Thus ¢1(Pic(X)) ~ Pic(X). This means that the Néron-Severi group NS(X), defined
for every surface S as Pic(5)/ker(c1), coincides with the Picard group Pic(X) if the surface
is of type K3. In particular, the linear and the numerical equivalence coincide. O

Since H?(X,Z) is torsion free it is a lattice with the pairing induced by the cup product,
and by the previous exact sequence NS(X) is a sublattice of it. The pairing on N.S(X)
coincides with the intersection form on Pic(X).

The orthogonal to the lattice NS(X) in H%(X,Z) is the transcendental lattice. We
will denote it by Tx = NS(X)*

H2(X,Z)

More precisely, the lattice H?(X,Z) with the cup product is an even unimodular lat-
tice of signature (3,19). Up to isometrie there exists only one lattice with these properties
that is U®3 @ EP?(—1). So the second cohomology group H?(X,Z) of any K3 surface is
isometric to the K3 lattice:

Ak3=UdUdU® Es(—1) ® Eg(—-1),

where Eg(—1) denotes the lattice whose entries of the Gram matrix are the opposite of
those given for the Fg-lattice.
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Remark 1.2.4. o Since h*°(X) = 1, the lattice H**(X) is generated by an element
wx called a period of the K3 surface X. It satisfies the conditions (wx,wx) = 0 and
<wX,w)(> > 0.

e By the Hodge index theorem, the signature of the Néron-Severi group of an algebraic
K3 surface is (1, p—1), where p is the Picard number, i.e. the rank of NS(X). Then
the transcendental lattice of an algebraic K3 surface has signature (2,20 — p). We
can identify the Néron-Severi group of a K3 surface X with the set:

NS(X) ~ Pic(X) = {z € H*(X,Z); (z,wx) = 0}.

For each oo € Ag3 we denote with [a] € P(Ax3®C) the corresponding line. The period
domain of K3 surface is the set

Q = {[w] € P(Ag3 ® C) such that (wx,wx) =0 and (wy,wx) > 0}.

We recall now the formula for the genus of irreducible smooth curves on smooth surfaces.

Lemma 1.2.5. Let C' be an irreducible smooth curve on the surface X. Then the genus
of C is given by:
1
9(C) =1+ 5(02 +C - Kx).

If X is a K3 surface, then we have seen that the canonical divisor Kx is trivial, so that
we get:

1
9(0) =1 + 502

Consider now two curves C,C" and let f : C — C" be a finite, separable morphism
of degree n. The Riemann-Hurwitz formula describes the relationship of the Euler
characteristics of two curves and gives a relation between their generas.

Lemma 1.2.6. (See |23, Corollary 2.4|)
With the previous hypothesis we have that:

2 —2g(C) =n(2—29(C")) = > (e, — 1), (1.2.1)

peC
where ey, is the ramification index at a ramification point p € C.

An isometry of the lattice H?(X,Z) is a Hodge isometry if its C-linear extension
preserves the Hodge decomposition of H?(X,C). In particular, if X and Y are K3 surfaces
a Hodge isometry i between H?(X,Z) and H?(Y,Z) is an isometry between H?(X,Z) and
H?(Y,Z) such that the C-linear extension of i preserves the Hodge decomposition.

The positive cone of X, V(X)7, is the connected component of V(X) = {z € HY(X)N
H?(X,R) such that (z,z) > 0} containing a Kéhler class (this implies that it contains all
the Kihler classes). An isometry between H?(X,Z) and H%(Y,Z) is called effective if it
preserves the positive cone and induces a bijection between the respective sets of effective
divisors.

Proposition 1.2.7. Let f : X — Y be an isomorphism between K3 surfaces. Then f* :
H2(Y,7) — H?*(X,7Z) is an effective Hodge isometry. In particular, an automorphism of
a K3 surface X induces an effective Hodge isometry on H?(X, 7).
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Theorem 1.2.8. ( Torelli theorem for K3 surfaces) Let X and Y be two K3 surfaces.
Suppose that there exists an effective Hodge isometry o : H*(Y,Z) — H?*(X,Z). Then
there exists a unique isomorphism f : X — Y such that ¢ = f*.

1.2.2 Non-symplectic automorphisms.

Let X be a K3 surface. Recall by Remark 1.2.4 that the vector space H*?(X) is generated
by a nowhere vanishing holomorphic two-form wy, i.e H>%(X) = Cwy. Let 0 € Aut(X) be
an automorphism on a K3 surface X. The action of & on the K3-lattice o* : H?(X,Z) —
H?(X,7) is an effective Hodge isometry (see Proposition 1.2.7). This means that the Hodge
structure of the surface X is preserved by o* and so we have o*(wx) = Aywx for A\, € C*.
The Torelli theorem for K3 surfaces (see Theorem 1.2.8) shows that the action of the
automorphism o is uniquely determined by o*.

Definition 1.2.9. A non-symplectic automorphism of finite order n on a K3 surface

X is an automorphism o € Aut(X) that satisfies o*(wx) = Apwx with Ay # 1 (if n = 2

we call o a non-symplectic involution), otherwise we call o symplectic. More precisely,
27

we assume that o (wx) = Cuwx, where (, = en s a primitive nth root of the unity. We
call o a purely non-symplectic automorphism.

Remark 1.2.10. Since in this thesis we only work with purely non-symplectic automor-
phisms, we call them non-symplectic for simplicity.

This thesis is devoted to the study of non-symplectic automorphisms of even order on
K3 surfaces and especially to non-symplectic automorphisms of order eight and sixteen
(i.e. n = 8,16 in Definition 1.2.9).

We denote by Fix(o) the fixed locus of the automorphism o such that:

Fix(o) ={zr € X | o(x) = z}.

We can find easily that Fix(o) C Fix(o?) for i =2,3,...,n — 1.
The invariant lattice of o is given by:

S(o0) ={z € H*(X,Z) | o*(x) = z}.

Proposition 1.2.11. Let X be a K3 surface with o purely non-symplectic automorphism
o of finite order n. Then rk S(o) > 0 and S(c) C Pic(X).

Proof. First, observe that rk S(o) > 0 since there is always an ample invariant class on X
(see [8, Theorem 3.1]).

On the other hand, let v € S(o) then o(v) = v, now the intersection product can be
extended to H?(X,Z) ® C so we have :

(v,wx) = (07(v),0"(wx)) = (v, Cuwx),

so that (v,wx) = 0. By the description of Pic(X) = {wx N H?(X,Z)} (see Remark 1.2.4)
we get that v € Pic(X) so that S(o) C Pic(X). O

Remark 1.2.12. Let v be a non-symplectic involution on X. In the generic case we can
assume that Pic(X) = S(v), i.e. the action of the involution v is trivial on Pic(X).
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On the other hand, let
T(0) = S(o)* N H*(X, 7).

Since S(o) C Pic(X) (see Proposition 1.2.11), the transcendental lattice satisfies that
Tx C T(0). Recall that the action of o on T'x and T'(¢) is by primitive roots of the unity,
see |8, Theorem 3.1 (c¢)], moreover the following proposition holds:

Proposition 1.2.13. Let o be a non-symplectic automorphism of even order n on a K3
surface X. Then all of the eigenvalues of o* on H?*(X,Z) ® C (which are the primitive nth
roots of the unity) have the same multiplicity q.

Proof. Consider the restriction of 0* to Tx. By [8, Theorem 3.1 (c)] the eigenvalues for the
action of ¢* on Tx ® C are primitive nth roots of unity. Since ¢* is an isometry of T’x, the
characteristic polynomial P(X) of ¢* is in Q[X]. The minimal polynomial of a primitive
nth root of unity is X2 4+ 1, hence P(X) = (X"/? +1).P(X) where P(X) € Q[X]. The
roots of P(X) are again primitive roots of unity of order n by [8, Theorem 3.1 (c)]. Hence
one can conclude that P(X) = (X™/2 4 1), this proves the statement. O

Remark 1.2.14. Observe that with a little modification in the proof of the previous propo-
sition the statement also holds for non-symplectic automorphisms with odd order n.

The moduli space of K3 surfaces carrying a non-symplectic automorphism of even
order n (n # 2) with a given action on the K3 lattice is known to be a complex ball
quotient of dimension ¢ — 1 where ¢ is rank of the eigenspace of o* in H?(X,C) relative

to the eigenvalues ¢, = e%, see [25, §11]. The complex ball is given by:
B = {[w] € P(V) : (w,w) > 0},

where V is the (,-eigenspace of ¢* in T(a”/z) ® C. This implies that the Picard group
of a K3 surface corresponding to the generic point of such space equals S(c™/?) (see [25,
Theorem 11.2]). This shows more precisely the case in Remark 1.2.12.

The action of the non-symplectic automorphism o of finite order n on a neighborhood
of a fixed point x € X can be locally linearized and diagonalized and so is given by a

matrix of the form:

fori=1,...,nand i+ j =1 mod n.
We distinguish two cases: if (i,7) = (1,0) (or (4,7) = (0,1)) the matrix A; g is

(5 1)

and then the point z belongs to a smooth fixed curve for o (corresponding to the eigenvalue
1 in the matrix). Otherwise, if i # 0,n (or j # 0,n ) the point z is an isolated fixed point
by o and we say that z is a fixed point of type P*/. We recall now the following useful
lemma which explain how we know the type of the fixed points in a tree of smooth rational
curves. This result, which generalizes the Lemma 8.1 in [13], is proved in [2].
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Figure 1.1: the action of an involution on a tree of smooth rational curves.

Lemma 1.2.15. Let T = ), R; be a tree of smooth rational curves on a K3 surface X
such that each R; is invariant under the action of o purely non-symplectic automorphism
o of order n. Then, the points of intersection of the rational curves R; are fized by o and
the action at one fized point determines the action on the whole tree.

Remark 1.2.16. The local action at the intersection points of the curves R; appear in the
following order:

¢ O o 20 G0 10
Ao )0 e ) U @) (T e )l g )

Practically, we see by Lemma 1.2.15 and Remark 1.2.16 that: for n = 2 the fixed locus of a
non-symplectic involution v does not contain isolated point (since the local action of v at a

o 1 :
fixed point is of type ( 0 _01 > ). So that for a tree of smooth rational curves, each curve

is preserved by v, we have the following. A curve between two invariant (not pointwise
fixed) curves is fixed by v pointwisely, while the curve which intersects two pointwise fixed
curves is just invariant by v with two fixed points on it (the intersection points with the
two fixed curves).

Figure 1.1 shows the situation for a tree of seven smooth rational curves. We denote the
invariant curve (not pointwise fixed) with a dotted line.

Non-symplectic involutions.

As we have seen previously the fixed locus for any non-symplectic automorphism o of
even order n > 2 on a K3 surface X, is a subset of the fixed locus of the involution
n/2 Qo that it is very useful to briefly recall the classification theorem for non-
symplectic involution on K3 surfaces (see [4, §2|) which was given by Nikulin in [9, §4] and
[11, §4].

The Fixed locus Fix(v) is the disjoint union of smooth curves and there are no iso-
lated fixed points. The lattice S(v) is 2-elementary (i.e. its discriminant group Agq) =
S(w)V/S(v) ~ (Z/27)%*) thus, according to Theorem 1.1.5 and Remark 1.1.7, its isometry
class is determined by the invariants r = rk S(v) = rk Pic(X), the length a and § (where
we introduce the invariant & of S(v) by putting § = 0 if 2* € Z for any x € Ag(,) and
0 = 1 otherwise).

vV = 0

Theorem 1.2.17. [9, Theorem 4.2.2]
The fized locus of a non-symplectic involution on a K3 surface is
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s

= =
S =

=N W s Ot oy ~] 00 ©

34 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

Figure 1.2: Non-symplectic involutions

o empty if r =10,a =10 and 6 =0,
o the disjoint union of two elliptic curves if r =10,a =8 and § = 0,
e the disjoint union of a curve of genus g and k rational curves otherwise, where

g=22—-r—a)/2, k=(r—a)/2.

Figure 1.2 shows all the values of the triple (r,a,d) which are achieved and the corre-
sponding invariants (g, k) of the fixed locus.

1.3 Elliptic fibrations.

Definition 1.3.1. Let X be a complex surface. A genus one curve fibration is a
holomorphic map f : X — B to a smooth curve B such that the generic fiber is a
smooth connected curve of genus one. An elliptic fibration is a genus one curve fibration
admitting o section s : B — X. The surface X is called an elliptic surface. We call F),
the fiber f~(v) over a point v € B.

The Mordell Weil group is the group of the sections of the elliptic fibration. The Mordell
Weil group is indicated with MW (X).

The zero section of an elliptic fibration is a chosen section s : B — X and we
identify the map s with the curve s(B) on X. The point of intersection between the zero
section and a fiber is the zero of the group law on the fiber.

For K3 surfaces we have that B = P! (see [17]) and the fibration admits a Weierstrass
form:

v’ =23+ a(t)z + B(t), (1.3.1)
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where a(t) and S(t) are two polynomials with complex coefficients such that deg a(t) = 8
and deg S(t) = 12.
The discriminant of the fibration is a degree 24 polynomial:

A(t) = 4a(t)® 4+ 278(t)2. (1.3.2)

The equation 1.3.1 is associated with an elliptic fibration if and only if A(¢) does not vanish
identically.

Each root of A(t) corresponds to a point p of the base P! such that F, is a singular
fiber of the fibration. There are at most finitely many singular fibers. Let § be the order
of vanishing of A in the point corresponding to the singular fiber, by Kodaira classification
the possible singular fibers are:

Dynkin
name diagrams description 0
11 a cuspidal rational curve 2
I nodal rational curve 1
I Aq two rational curves meeting transversally at two points 2
2N & — - 2
_ | |
I,,n>3 A, ra Grom— s i n
6o Ori3
™~ P [/ Y — Orso -~
* 2 [} / \ Opia
In? n>0 Dk+4 n+6
117 two rational curves meeting in a point of order 2 3
v three rational curves all meeting at one point 4
0o 0, (l)2 O 0,
el),»,
Iv* Es %6 8
) 2 03 Oy —— 05 —— 6 —— 07
111 Er 2 9
O 04 9|2 O3 0,4 O O O
I Ex O 10

Table 1.2: Kodaira classification

The Euler characteristic of the singular fibers are

e(Ip) = n, e(I) =2, e(III)=3, e(IV)=3,
e(I¥)=n+6, e(II*)=10, e(IIl*)=9, e(IV*)=38,

where ©q is the component of a fiber meeting the zero section. The first column in the
Table 1.2 contains the name of the reducible fiber according to Kodaira classification, the
second the Dynkin diagram associated to the fiber, the last column contains the order of
vanishing of A in the point corresponding to the singular fiber.

Remark 1.3.2. Let EI' be the subset of the fiber F, obtained by deleting the singular
points of the fiber, and let Ffo be the subset of FY obtained by deleting the component

meeting the zero section. Then F¥ is an Abelian group, with the operation induced by the
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operation of the Mordell Weil group. For each type of fiber we describe here the groups Ffo
and F#/Ffo and so the group FY¥.

Fiber | F7, FfJF],
Iy elliptic 0
I,,n>1 c* Z/nZ
I C { Z7)27 x /27 if niseven
n 7./A7 if nisodd
11,17 C 0
111,117 C 7/27
w,ive | ¢ 7.)3Z

In particular this gives strict conditions on the automorphism group of an elliptic fibration
with o reducible fiber, because an automorphism of a reducible fiber has to be compatible
with the group structure of the fiber.

A simple component of a fiber is a component with multiplicity one. In the following
table we describe the singular fibers of an elliptice fibration with the multiplicities of the
vertices of the extended Dynkin diagrams, and we indicate the simple components.

name simple components associated Dynkin diagram
> - ——— ’

- >~ e — — — — — — — I
An ©; +=0,...,n—1 ! 1 '

Diyg | ©5, i=0,1,k+3k+4

Fy O I

Table 1.3: Dynkin diagrams with the multiplicities of the components

The Néron-Severi group of a surface admitting an elliptic fibration contains the class
of a fiber F' (all the fibers are algebraically equivalent) and the class of the zero section s.
Since the fibers are all algebraically equivalent ' - F = 0. The zero section intersects any
fiber in one point, so that F'-s = 1.
The sections of an elliptic fibration on K3 surfaces are rational curves and this implies that
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their self-intersection is -2. Moreover, if X is a K3 surface admits an elliptic fibration, then
there is an embedding of U in NS(X), where U is the two dimensional lattice

= ]

Observe that the lattice U is isometric to the hyperbolic plane U.

We recall now the Shioda-Tate formula (see |20, Section 7|): Let Red be the set
Red = {v € P!|F, is reducible}. Let p be the Picard number of the surface X and m,, is
the number of irreducible components of the fiber F,,. Then

p(X) =1k NS(X) =tk MW(X)+2+ > (my,—1).
vERed

The Néron-Severi lattice of X is generated over Q by F', by the classes of irreducible
components of the reducible fiber, which do not intersect the zero section and by the
sections.

Definition 1.3.3. The trivial lattice Trx of an elliptic fibration on a surface is the
lattice generated by the class of the fiber, the class of the zero section and the irreducible
classes of the reducible fibers which do not intersect the zero section.

Remark 1.3.4. The lattice Trx admits U as sublattice and its rank is

rkTx =2+ Y  (m, —1).
vERed

We recall another important theorem which is given in [20, Theorem 1.3].

Theorem 1.3.5. The Mordell Weil group MW (X)) of the elliptic fibration on the surface
X is isomorphic to the quotient NS(X)/Trx.

Assume f : X — P! admits an n—torsion section 5. If X is K3 surface, the section
5 induces an automorphism of the same order on X, defined as the identity on the base
of the fibration and as a translation by the section on each fiber. This automorphism is
a symplectic automorphism. In fact, the nowhere vanishing holomorphic two form of an
elliptic K3 surface X is locally given by f(7)(dz/y) Adr, where f(7) is a nowhere vanishing
holomorphic function. Let dz = dx/y. Then dz is a holomorphic form on each fiber E.
The automorphism induced by the torsion section acts as the identity on 7, because it
fixes the base of the elliptic fibration. Moreover the automorphism acts on a fiber F as a
translation, so it fixes dz. In other words, f(7)dz A dr is fixed by the automorphism.
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Chapter 2

Non-symplectic automorphisms of
order 8

In this chapter we study non-symplectic automorphisms of order eight on K3 surfaces.
We obtain a complete classification for the non-symplectic automorphisms of order § on a
K3 surfaces, and we give several examples showing the existence of several cases in this
classification

2.1 The fixed locus.

Let X be a K3 surface with a non-symplectic automorphism o of order 8, this means
that the action of o* on the vector space H*?(X) = Cwyx of holomorphic two-forms is
not trivial. More precisely we assume that c*wx = (swx, where (g = eF is a primitive
8th root of the unity. We call o in this case a (purely) non-symplectic automorphism for
simplicity we just call it non-symplectic.

We denote by 7,i,1,i,m, and my for i = 1,2, 4 the rank of the eigenspace of (¢%)* in
H?(X,C) relative to the eigenvalues 1,—1,4 and (g respectively (clearly my« = 0). For
simplicity we just write 7,1, m for i = 1. We recall the invariant lattice:

S(o?) = {x € H*(X,Z)| (o))" () = 2},
and its orthogonal
T(07) = S(o)) N H*(X, 7).

Observe easily that rk S(o') = r,:, we have moreover that S(o?) C Pic(X) and r,: > 0 for
all i = 1,2,4 (see §1.2.2. Proposition 1.2.11). More precisely in the generic case we can
assume that Pic(X) = S(0*) as we have remarked in §1.2.2.

The following result will be useful later:

Lemma 2.1.1. Let p be a purely non-symplectic automorphism of finite order n, such that
Pic(X) = S(u). Then p preserves each smooth rational curve in X (where it is either
pointwise fized by p or it contains two isolated fived points).

Proof. Let R be a smooth rational curve in X. Since S(u) = Pic(X), the class of R
in Pic(X) equals to the class of pu(R) (i.e R ~ u(R) in Pic(X)). On the other hand,

21
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since by [12, (2.5.1)] h°(X,Ox(R)) = dim(H*(X,Ox(R)) = dim({D effective divisor ;
D ~ R}) =1, then there is only one effective divisor rationally equivalent to R which is R
itself, so u(R) = R. Hence any smooth rational curve in X is invariant for pu. O

On the other hand, since S(o?) C Pic(X) for i = 1,2,4 the transcendental lattice
satisfies that Ty C T(o?) for i = 1,2,4. We write T(c) := T(c!). recall that the action
of 0 on Tx and T'(o) is by primitive roots of the unity, see [8, Theorem 3.1 (c)], moreover
the following proposition holds:

Proposition 2.1.2. Let o be a non-symplectic automorphism of order eight on a K3
surface X with S(o*) =2 Pic(X). Then all of the eigenvalues of o* on H*(X,Z) ® C which
are the primitives 8th roots of the unity have the same multiplicity my (i.e. tk Tx = 4my ).
Moreover, the following inequalities hold:

m <5, 1<m+m <7

Proof. The first half of the statement is proved by Proposition 1.2.13 of Chapter 1. On the
other hand, since X is a K3 surface then, rk Tx < 22 thus 4m; < 22 and so mq; < 5. To
find the second inequality we use the relation 4(3_c, cpix(o2)(1 = 9(Ci)) = 2(10 —ly2 —m,2)
of |2, Proposition 1|, where 2m,2 = rkT(c*) = 4m; and l,2 = 2m. Hence:

20 ) (1—g(C)) =10 — L2 — mye

C;CFix(02)
=10 —2m — 2m;.

So that:

Z (1—g(C¢)):5—(m+m1).

C;CFix(02)

But for |2, Theorem 0.1] we get:

2( Y, (1-g(C))+4=0,

C;CFix(o2)
Thus:
> g0 -2
C;CFix(o?)
So that —2 < (3¢, crix(o2)(1 — 9(Ci)) = 5 — (m + mq) hence m +my < 7. O
Remark 2.1.3. o [t is a straightforward computation to show that the invariants vy, l i, mgi

and my with 1 = 1,2,4 satisfy the following relations:

ro2=r4+1l; rya=r+14+2m;
ly2 = 2m; loa = 4my;
2mgy2 = 4my.

e As a direct consequence of the previous relations one can get immediately that the
invariants l,2 and m,2 of 02 are even numbers.



2.1. THE FIXED LOCUS. 23

We denote by Fix(o') for i = 1,2, 4 the fixed locus of the automorphism ¢* such that:
Fix(o') = {x € X | 0'(x) = x},

we can find easily that Fix(c) C Fix(0?) C Fix(c*). In fact this simple result beside the
facts in Remark 2.1.3 will be very useful later when we want to do the classification of
the non-symplectic automorphisms of order 8. So to describe the fixed locus of order 8
non-symplectic automorphisms we start recalling the following result about non-symplectic
involutions (see Theorem 1.2.17 in Ch 1 and also [11, §4|).

Theorem 2.1.4. Let 7 be a non-symplectic involution on a K3 surface X. The fized locus
of T is either empty, the disjoint union of two elliptic curves or the disjoint union of a
smooth curve of genus g > 0 and k smooth rational curves.

Moreover, its fized lattice S(7) C Pic(X) is a 2-elementary lattice with determinant 2°
such that:

o S(7)=U(2) @ Es(2) iff the fized locus of T is empty;
o S(17)=U @ Eg(2) iff T fizes two elliptic curves;
o 2g=22—71kS(T) —a and 2k = rkS(7) — a otherwise.

We denote by N, ki for i = 1,2,4 the number of isolated points and smooth rational
curves in Fix(o!) (remark that N, is always equals to 0 since Fix(c?) does not contain
isolated points as we have seen in Theorem 2.1.4). For simplicity we write just N :=
N,1,k := k,1. The fixed locus by o is given by:

Fix(c) =CURy U...URyU{p1,...,pn}

where C is a smooth curve of genus g > 0, R; are smooth disjoint rational curves and p; are
isolated points. Observe that by [2] the fixed locus Fix(c) can never contain two elliptic
curves. One can see this also directly since as we will see in Proposition 2.1.8, L(o) # 0.

Remark 2.1.5. The non-symplectic automorphism o of order 8 acts on a set of smooth
rational curves of X either trivially (i.e. each smooth rational curve is o-invariant or
eventually pointwise fized by o) or it exchanges smooth rational curves two by two, or
finally o permutes four rational curves between them (in fact each curve in the set of
permuted smooth rational curves by o has stabilizer group in (o) of order 2, hence its o—
orbit has length 4).

Lemma 2.1.6. Four cyclic permuted smooth rational curves, by a non-symplectic auto-
morphism o of order 8 on a K3 surface X, are each o*-invariant, eventually pointwise

fized by o*.

Proof. We can prove it simply as follows. Let C; ;i € {1,..4} be four smooth rational curves
such that o(C;) = Ci41 ;i = 1,2,3 and o(C4) = C1, and assume that Cy is invariant by
o, then 04(Cy) = o*(0(C1)) = 0(0*(C1)) = 0(Cy) = Cy. In particular if Cy is pointwise
fixed, then one proves in a similar way that Cs is pointwise fixed. A similar proof holds
also for C's and Cl4, so we get the statement.

O
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We denote by 2a the number of exchanged smooth rational curves by ¢ and fixed by
0?2, and by 4s the number of smooth rational curves cyclic permuted by ¢ and fixed by o
(and clearly they are interchanged by o2 two by two).

Remark 2.1.7. Let a,2 be the number of pairs of rational curves interchanged by o and
fized (that means pointwisely fized) by o* (so that the number of curves is 2a,2), then
2052 = 4s and s0 a2 € 27.

This remark will be very useful later in the study of the fixed locus of o.

Proposition 2.1.8. Let o be a purely non-symplectic automorphism of order 8 on a K3
surface X .Then Fix(c) is the disjoint union of smooth curves and N > 2 isolated points.
Moreover, the following relations hold:

n2,;7 +n3e = 2+ 4o,
nas +n27 —n3e =2+ 2aq,
N=2+4+r—-10-2a.
Here we denote by n; ; the number of isolated points of type P%3 which are fived by o, and

a= ¥ (1-g(C)):

CCFix(o)

Proof. Let o be a purely non-symplectic automorphism of order 8, then o*(wx) = (swx

where (g = ¢%'. The action of o at a point in Fix(c) can be locally diagonalized as
follows (up to permutation of the coordinates, but this does not play any role in the next
discussion):

0 i 0 30 -1 0
A1,0=<%8 1),A2,7:<0 §g>,A3,6=<% —i)’A4’5:( 0 C{;’)'

In the first case the point belongs to a smooth fixed curve, while in the other cases it is an
isolated fixed point. we say that an isolated point = € Fix(o) is of type P if the local
action at x is given by A; ;. We denote by n; ; the number of isolated fixed points by o of
type P"J. The Lefschetz number of ¢ is :

2
Lio) = Y (~1)(tr(o"[H(X, Ox))

j=0
= (tr(o*[HY(X, 0x)) — (tr(o*|H (X, Ox)) + (tr(o*[H2(X, Ox)).

For K3 surfaces we have h'(X,Ox) = 0, hence we have to compute the action of o* only
on H(X,Ox) and H?(X,Ox). By Serre duality we get:
H*(X,0x) = HY(X,0%)” where H’(X, Q%) = Cuwx.
Since 0*(wx) = (swx we have that o* acts by multiplication by (s on H(X,0%)”. And
since the action is trivial on H°(X, Ox) we obtain:
Lio) = 1-0+(s
= 1+
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We remark immediately that since L(o) # 0 the fixed locus is never empty.
Now we assume that the fixed locus of o is as follows:

FiX(O’):CUR1U...URkU{p1,...,pN}

where C' is a smooth curve of genus g > 0, R; are smooth disjoint rational curves and p;
are isolated points.

We also have that the Lefschetz number L(o) for a non-symplectic automorphism of
order p is given by the following formula (see [24, Theorem 4.6]) :

L(o) =Y alp;) + > b(Dy).
j k
Such that

~ det(T—o%[r,) 1-¢  (1-¢)?

where p; is an isolated fixed point, Dy is a fixed curve and T}, is the tangent space at
pj. Since X is a K3 surface then the self-intersection of Dy is equal to D} = 2g(Dy) — 2.

Hence L(o) =" a(pj) + > %, and so for o of order 8 we get :
j k Y

B na7 n3,6 n45 (1+G)
L) = Geit = aon) T det(T - Asg) T deti - Ang) TG

B na7 n3.6 N4 5 (1+4¢s)
Mo =am0—g aro-o taa-@ U

where a = > (1 —g(C)).
CCFix(o)

We introduce the following notation:

Q=2(1-1)(1 - DA+ - -1~ Q= gty
Q2 = MO(QW , Q3= 2(1?45) ) Qu = 6(21(172;)82) and Qs = Q1 +¢).

where by comparing the two expressions of the Lefschetz number L(o) we have:
n27Q1 + n36Q2 +nasQs + aQs = L(o) = Qs.
By computing Q,Q; for i € {1,...,5}, with (g = v/2/2 +i1/2/2 , one obtains that:
—4V2 i nag + 4(V2 = 2)inz s + 4(1 — V2)ings + 8(1 4+ V2)ia = —8V2 4.
Hence

(—4no7 +4nge — 4nas + 8a)V2i = —8V/2i.
(—872376 + 477,475 + 804)i = 0.

Since n; j,a € Z , we obtain the two following relations :
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No7 —N36 + N4 5 — 20
—2n3,6 +ng5 + 200 =

and so we get:
(**)

In particular this implies that the automorphism o fixes at least 2 isolated points. In fact
if & > 0 then by the first relation of (**) we get na7 + nze > 2. Otherwise, o < —1 and
so na7 +n3e < —2 by the first relation again which is not possible.

no7+n3e = 2+ 4a.
ngs+mno7—n3e = 2+2a.

We consider now the topological Lefschetz fixed point formula:
4

X(Fix(o)) = Y _(~1Ytr(o"|H/(X, R))

j=0
=2+ tr(c*|H*(X,R))
=24 r(1) +U(=1) +m(i — i) +mi(Cs+ G+ &+ &)
=24+r—1L
Where tr(o*|H?(X,R)) = tr(c*|H*(X,R)) = 1, tr(o*|H(X,R)) = tr(c*|H3}(X,R)) = 0,
and m is the multiplicity of 4, m; is the multiplicity of the 4 eigenvalue (g (see Proposition

2.1.2).
On the other hand, the Euler-Poincaré charactaristic x(Fix(o)) is also given by:

X(Fix(e)) = > x(Ci)+ Y x(Pi) - (T)
C;CFix(o) P;
Where
x(C) := h(C,Z) — ' (C,Z) + h*(C, Z)
=1-29(C)+1
=2-2¢(C).

Substituting in the relation (I) we get the following equality:
X(Fix(e) = > 2(1-g(C))+N
C;CFix(o)
=2a+ng7 +n3e+ n4p5.
Comparing the two formulas for x(Fix(c)) we obtain the relation :
204—|—n2,7—|—n3’6—1—n4,5 =24+r—1.

Comparing with (**) we get:
(44+r—1)

2 Y
n277+3n376 =24r—1;

20=2—-N+r—1.

no7+ Ngs =
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Remark 2.1.9. The isolated fixed points, by a non-symplectic order eight automorphism
o of type P>" and P3% are also isolated points in Fix(o0?). The points of type P*° in
Fix(o) are contained in a smooth fived curve by o®. In fact the action of o2 at a point

of type P*® is given by the matriz < ) which tmplies that this point belongs lo a

1 0
0 ¢
smooth curve in Fix(o?).

From now on we denote by n; instead of n; ; the number of isolated fixed points by o
of type P*, where 1 =2,3,4and i+ 5 =9.

We recall now Lemma 1.2.15 and the following useful remark which is a direct applica-
tion of the Remark 1.2.16 when the order of a non-symplectic automorphism is n = 8 (see
also e.g. [2, Lemma 4|):

Lemma 2.1.10. Let T = ), R; be a tree of smooth rational curves on a K3 surface X
such that each R; is invariant under the action of a purely non-symplectic automorphism
o of order q. Then, the points of intersection of the rational curves R; are fived by o and
the action at one fized point determines the action on the whole tree.

Remark 2.1.11. In the case of an automorphism of order 8, with the assumption of
Lemma 2.1.10, the local actions at the intersection points of the curves R; appear in the
following order (we give only the exponents of (g in the matriz of the local action):

...,(0,1),(7,2),(6,3),(5,4), (4,5),(3,6),(2,7),(1,0), ...

Assuming that T = R consists of only one rational curve, which is not pointwise fized, one
get immediately that o has either one fized point of type P>7 and another one of type P35
or two fized points of type P,

2.2 Elliptic fibrations.

Proposition 2.2.1. Let o be a purely non-symplectic automorphism of order 8 on a K3
surface X such that Pic(X) = S(0*) 2 U@ L and o* fives a curve C of genus g > 1.
Then X carries a jacobian elliptic fibration m : X — P! whose fibers are o*-invariant .
Moreover:

o [f L is isomorphic to a direct sum of root lattices of types An, Dyin, E7 or Eg then w
has reducible fibers described by L and a unique section E C Fix(c*). The fibration
7 is o-itnvariant if g > 4. Finally the genus of a curve in Fix(o) (if it exists) is equal
to 2.

o If L is not isomorphic to a direct sum of root lattices, then w has two sections E, E C
Fix(o%) and C intersects each fiber in two points. The fibration m is c—invariant if
g > 2. Finally the genus of a curve in Fix(o) (if it exists) is 2 and we get k > 1 in
this case.

Proof. The first half of the statement follows from [5, Lemma 2.1, 2.2|. If o* fixes a curve
C of genus g > 1, then this curve is transversal to the fibers of m. This implies that
o preserves each fiber of 7 and acts as an involution on it with four fixed points. If
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L is a root lattice, then by [6, Theorem 6.3] we have that the Mordell-Weill group of =
is MW (m) = Pic(X)/T where T denotes the subgroup of Pic(X) generated by the zero
section and fiber components. Hence since L is a root lattice and Pic(X) =2 U & L we have
that MW (T) is trivial, thus 7 has a unique section E. Since o* preserves each fiber of T,
we have E C Fix(c%). Eventually this implies that C intersects each fiber in three points
with multiplicity (since o* acts as an involution on a generic fiber of 7 with 4 fixed points
on each one of them) and one fixed point for the action of o* is contained in the section
E.

Now we prove that 7w is o—invariant if ¢ > 4. Let f be the class of a fiber of 7 and
s be the class of the curve C. The automorphism o preserves the curve C, and we have
that C N E = 0 since the fixed curves for 0% can not intersect. Assume that f # o*(f)
then they intersect in at least 2 points. In fact if f.o*(f) = 1 then this is a fixed point
on f and so either C is fixed by o which is not possible (since f.o*(f) > 3 in this case,
where C' intersects each fiber in 3 points), or E is fixed by o. This is not possible too,
since otherwise the action of o on the basis of the fibration would be the identity and so
f = o*(f) which contradicts the assumption f # o*(f). Now applying [2, Lemma 5| we
find that: ,

29—2282§M§§§67
fox(f)+1 3
which implies that g = g(C) < 4 if 7 is not o—invariant. Hence 7 is o-invariant if g > 4.
Now we suppose that o fixes the curve C, then by [2, Theorem 2.1| we get g < 2 and 7 is
not invariant by o (where C is contained automatically in Fix(o?)).

If L is not a root lattice, then the Mordell-Weil group of 7 is not trivial, so that 7 has

at least two sections E',E C Fix(c%). Since o* fixes 4 points on each generic fiber, we
have that s.f < 2. If s.f = 1 (i.e there are three sections of 7 fixed by o) then g < 1 by
[2, Lemma 5] that is not possible. Hence C' intersects each fiber in two points. In this case
2 < g < 5if 7 is o-invariant by [2, Lemma 5| such that o does not have any fixed point on
a generic fiber of 7, and g < 2 by the same |2, Lemma 5| otherwise.
If o fixes a curve C, then f.o*(f) > 2 since o fixes two points on each fiber and so it cannot
preserve a generic fiber of 7 (since otherwise each fiber would admit an automorphism
of order 8, hence o would be a translation which is impossible too). Hence 7 is not
invariant by ¢ which implies that g < 2 by [2, Lemma 5]. Moreover, o fixes at least one
smooth rational curve. In fact by Proposition 2.1.8 we have that no + n3 = 2 + 4 where
a=k+1—-g(C)=k—1since g(C) = 2. So that £ > 0 (where ng +n3 =4k —2is a
positive number).

O]

2.3 The case of an invariant elliptic curve.

In this section we suppose that o fixes an elliptic curve C. Thus the K3 surface X carries
an elliptic fibration 7o : X — P! having C' as a smooth fiber. Observe that ¢ is invariant
by o ; i = 1,2,4 (since o’ preserves C which is a fiber of 7¢ ) and all curves fixed by o*
are contained in the fibers of m¢o, that because they are disjoint with C' and the action on
the base of o is non-trivial. In fact if the action would be trivial then a smooth fiber would
have an automorphism of order 8. An elliptic curve can admit only automorphisms of
order 2,4,6 (different from a translation), so that this automorphism should be induced by
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a translation by a point of order 8 on the generic fiber. But then o would be a symplectic
automorphism, which contradicts our assumption on o. Here we distinguish the following
three cases:

e The elliptic curve C' is fixed by o.
e The elliptic curve C' is fixed by o2 but is not contained in Fix(o).
e The elliptic curve C is only fixed by o*.

Lemma 2.3.1. If X carries a o—invariant elliptic fibration, such that o* fizes an irre-
ducible smooth fiber C' of this fibration, then o acts with order 8 on the basis of the fibration
and fixes two points on it.

Proof. Let mc : X — P! be a o—invariant elliptic fibration having C' as a smooth fiber
and such that C is fixed by the involution o*. Observe that o? (respectively o*) is not
the identity on the base of m¢, since otherwise it would act as the identity on the tangent
space at a point of C, contradicting the fact that o2 (respectively o) is purely non-
symplectic. Hence o acts as an order eight automorphism on P! and has two fixed points
on it corresponding to C' and another fibre C’. O

2.3.1 The fixed locus Fix(c) contains an elliptic curve.

Here we assume that o fixes an elliptic curve C, and so it will be also fixed by a non-
2

symplectic order four automorphism o“.
Theorem 2.3.2. Let o be a purely non-symplectic order eight automorphism on a K3
surface X with Pic(X) = S(c*) and ¢ : X — P! be an elliptic fibration with a smooth
fiber C C Fix(0). Then o preserves mc and acts on its base as an order eight automorphism
with two fized points corresponding to the fiber C' and a fiber C' which is either smooth or
of Kodaira type IV*. The corresponding invariants of o are given in Table 2.1 .

3 2 3 3 (2,0,0) 0 0 Io
2 2 6 4 (1,1,2) 0 1 v

my m T l (ng,n3,ny) N kAl typeofC’
2
4

Table 2.1: The case g=1, C C Fix(o).

Proof. By Lemma 2.3.1 we get that ¢ has order 8 on P! with two fixed points on it
corresponding to C and another fiber C’,, which is either smooth elliptic or reducible such
that it contains all fixed rational curves by o.

If C' is irreducible, then o =k = 0 thus N =247 —l and N = ny + 2 = 2n3 + 2 by
Proposition 2.1.8. We observe that ny = 0, since otherwise o would fix a curve transversal
to C" that should meet C (where C’ is not fixed by o2 since it does not fix two elliptic
curves by [2, Proposition 1]). But C is also fixed by o2, so this is not possible. Hence we
get that N = 2 and ng = ng = 0 thus ng = 2, which implies that C' is smooth elliptic
and o has order four on it (where it fixes two isolated points on C"). Using the fact that
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(rg2,ly2,mg2) = (6,4,6) (see |2, Theorem 3.1|) we get immediately that m; = 3,m = 2.
Moreover we have that r —l =0 and r+1 = 6. So that r =1 = 3.

We now assume that € is reducible and we classify the possible Kodaira types for it.
Since the fibration admits also an automorphism of order four o2, by [2, Theorem 3.1] the
possible types of C are: Iy, IV*, Ig, 115, I16. Observe that the cases C' is of type Ig and Iqg
with a,2 = 1,3 respectively contradict Remark 2.1.7. On the other hand, the cases when
C' is of type I4 and I12 can be excluded since m, 2 = 2my and [, = 2m are even numbers.

If ¢' = IV*, then the case with ay2 = 1 is not possible by Remark 2.1.7 again. We
are left with the case ¢’ = IV* and (a2, ky2, N,2) = (0,1,6). Observe that ny = ns (see
Remark 2.1.11, where the fixed points by ¢ are contained in smooth rational curves) so
that we get 2no = 2 + 4a by Proposition 2.1.8. If k = 1, then no = ng =3 and ngy =0
(since k,2 = k = 1), but that contradicts the fact that ny > 0 by the second equality of
Proposition 2.1.8. Thus £ = 0 and so no = n3 = 1, ng = 2 and o acts as a reflection on
the fiber V™.

By the same previous argument one computes easily the values of my,m,r and [ as in
Table 2.1. O

2.3.2 The fixed locus Fix(c?) contains an elliptic curve.

We assume that C' C Fix(0?) is not fixed by o, since we have already discussed this
case in Theorem 2.3.2. Observe however that one can easily show that o preserves C.
We recall first some notations. Let N’ be the number of isolated fixed points of o on
a curve C C Fix(c?) of genus g > 1, and let 24 be the number of smooth rational
curves interchanged by ¢ and invariants (but not pointwise fixed) by o2. We remark that
N,2 = (ng +n3) + 44 and the fixed points on C are of type P*® in this case.

Theorem 2.3.3. Let o be a purely non-symplectic automorphism of order eight on a K3
surface X with Pic(X) = S(o?) and C be an elliptic curve in Fix(0?) and assume there is
no elliptic fived curve by o. Then the corresponding invariants of o are given in Table 2.2.

miy  m T l N (ng,n3,ng) N k' a A| typeofC
3 2 3 3| 2 (2,0,0) 0 0 0 0 T
3 2 5 1] 6 (0,2,4) A 0 0 0 I
5 2 6 4| 4 (1,1,2) 0 0 0 1 v*
2 2 10 0] 10 (3,3,4) 4 1 0 0 v*

Table 2.2: The case g=1 , Fix(0?) D C ¢ Fix(o).

Proof. Since o preserves C, then there is a o—invariant elliptic fibration 7¢ : X — P!
with fiber C'. Observe that by Lemma 2.3.1 the automorphism o has order eight on the
basis of mc and it has two fixed points on P!, corresponding to the fiber C and a fiber '
of mc. This implies that all rational curves fixed by ¢ are contained in C’. Observe that o
acts on C either as an involution with four fixed points or as a translation. By the same

argument as in Theorem 2.3.2 we have that C' is either a smooth elliptic curve or of type
v,
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If ¢ is irreducible, then o = k = 0 thus N =2+ r —land N = ny + 2 = 2ng + 2
by Proposition 2.1.8. Since Fix(c2) can not contain two elliptic curves (observe that C’
must be smooth), and since o acts on C either as an involution with four fixed points of
type P*® or as a translation with zero fixed point, we have ny either equal to 0 or to 4
and (na,n3) = (2,0) or (0,2) by Proposition 2.1.8. In these two cases C’ is smooth elliptic
and o acts on it as an order four automorphism with two fixed points.

If C' is of type IV*, then the central component of multiplicity 3 is invariant for o. If
the central component is fixed by o, then k. =1, A = a = 0 and by Lemma 2.1.10 we
have that no = n3 = 3. By Proposition 2.1.8 we get ny = 2 + 2k = 4 thus o acts as an
involution on C and N’ = 4 . Otherwise the two branches of the fiber C are exchanged
by o thus k = 0 and A = 1. On other hand, the central component of C' has two isolated
fixed points of type P*5. By applying Lemma 2.1.10 we obtain that no = n3 = 1 and so
ng = 2 by Proposition 2.1.8. In this case o acts as a translation on C. O

2.3.3 The fixed locus Fix(c*) contains an elliptic curve.

We assume that Fix(c) and Fix(c?) do not contain an elliptic curve. Observe that the
fixed points by o on C are of type P> and P39,

Theorem 2.3.4. Let o be a purely non-sympletic automorphism of order eight such that
Fix(c*) contains an elliptic curve C and o',i = 1,2 does not fizx an elliptic curve. Then
we are in one of the cases appearing in Table 2.5.

mi m r l N (ng,n3,nyg) N k a type of C’
3 2 3 3 2 (2,0,0) 2 0 0 Iy
2 1 10 2| 8 (4,2,2) 2 1 0 Is
9 1 8 4| 6 (0,2,4) 2 0 0 Is
2 1 6 6| 2 (2,0,0) 2 0 1 Iy
9 3 4 4| 2 (2,0,0) 2 0 0s=1) Is
1 0 17 1] 14 (6,4,4) 2 2 0 Tis
10 11 7| 6 (0,2.4) 2 0 1 I
1 0 9 9| 2 (2,0,0) 2 0 2 I
1 4 5 5| 2 (2,0,0) 2 0 0(s=2) I
2 2 6 4| 4 (1,1.2) 0 0 0 v

Table 2.3: The case g = 1, Fix(c?) D C € Fix(o?).

Proof. As in the proof of theorems 2.3.2 and 2.3.3 the K3 surface X admits a o—invariant
elliptic fibration. By Lemma 2.3.1 the automorphism o acts with order 8 on the basis of
the fibration with two fixed points. Let C' and C be the fibers over these two points.

If ¢ is irreducible, then o acts on it either as an order four automorphism with two
fixed points (of type P%7, P3%) or as a translation. Observe that n4 = 0 in this case. Since
k =0 and ng = 0 (where m¢ does not have a fixed section since the curves in Fix(c?) do
not intersect ) we have by Proposition 2.1.8 that (na,n3) = (2,0) and r—1{+2 =2sor = [.
Hence o acts as a translation on one of this two elliptic curves and as an automorphism of
order 4 on the other fiber. In this case o2 only has isolated fixed points so that we are in
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the case g = 1 and (my,2,7,2) = (6,6) of Table 6 of |2].

If ¢ is reducible, then we will distinguish the following two cases:

o k2=0:

In this case we have that £k = ny = 0 thus N = 2 and (n2,n3) = (2,0) by Proposition
2.1.8. Observe that these two fixed points belong to the curve C ( they can not be
contained in a rational curve by Remark 2.1.11) and so the four fixed points by o2
are contained in C' (here N 2 = 4 by |2, Proposition 1]). On the other hand, we have
ky2 = ko, = 0, this means that o and o2 do not fix any point in C" which excludes
the Kodaira types I11,1V, Iy, IT*, I11* and IV* of ' (where otherwise we get a
contradiction with the fact that 7 is invariant by o).

Assume that now C” is of type In; ; M > 4. Since kya = 2a,2 in this case (where
k,2» = 0 and the isolated fixed points by o2 are contained in the smooth fiber C)
and all fixed curves by o* are contained in €', we get M = 2k, 4 = 4a,2 (in fact all
components of C" are preserved by o since Pic(X) = S(o#) and a component which
is not fixed intersects two fixed ones). Hence C’ is of type L1 ,. By Lemma 2 we

have ay2 € 27 so that C” is of type Iy with 2a,2 = 4 or of type I with 2a,2 = 8.
That corresponds respectively to the case (1,2, mg2) = (8,4),(10,2) in [2, Table 6] .
Assume that now C is of type Ins ; M > 4. Since k,a = 2a,2 in this case (where
k = ny4 = 0) and all fixed curves by o are contained in C’, thus M = 2k,4 = 4a,2. In
fact all components of C" are preserved by o since Pic(X) = S(o#) and a component
which is not fixed intersects two fixed ones. Hence C' is of type Iy _,. By Remark

2.1.7 we have ay2 € 27 so that C is of type Iy with 2a,2 = 4 or of type I1g with
2a,2 = 8. That corresponds to the case (1,2, my2) = (8,4) respectively (10,2) in
Table 6 of [2].

o ko2 #0:
Here we will study the cases when [,2 = 0 and I,2 # 0 (i.e. the action of o is trivial
or non trivial).

(i) l,2 #0:

By [2, Theorem 8.4] and since Fix(o) C Fix(0?) and m,2 = 2m; is an even number,
we get that C’ is either of Kodaira type IV* and o? acts on C as a translation, or
it is of type I3 such that k.2 = 2 and o2 acts as an involution on C. If C is of
type IV*, then the central component of multiplicity 3 is invariant (not necessarily
pointwise fixed) by ¢ and pointwise fixed by ¢?: in fact since C’ is preserved by
o',i =1,2,4 thus either o preserves each component of IV* or it exchanges the two
branches of IV*. In this two cases o2 preserves each component of ¢ and it fixes
the central component of multiplicity 3 since it has at least three fixed points by
o? (here we have k,» = 1 and so k < 1). We have then that either k = 1 when
o preserves each component of C', hence a = A = 0 and (ng,n3,n4) = (3,3,4) by
Proposition 2.1.8. On the other hand, by applying Lemma 2.1.10 one get that the
fiber C" contains only 3 fixed points of type P>7 and 3 fixed points of type P36.
So that the four fixed points by o of type P*° are contained in the smooth fiber
C. That is not possible since otherwise ¢ would act on C' as an involution which
contradicts our assumption. Or k = 0 such that the automorphism o exchanges the
two branches of C'. By applying Lemma 2.1.10 we get that the fiber C’ contains two
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fixed points of type P*° (on the central component of multiplicity 3) and one point
of type P?>" and another one of type P36, In this case o acts on C as a translation
where (ng2,mn3,n4) = (1,1,2) by Proposition 2.1.8.

Now assume that C’ is of type Ig, thus it contains at most two fixed curves by o
since k,2 = 2. If k = 2 then ny = 0 and so N = 10 by Proposition 2.1.8. Hence o
fixes 6 points on C. It is impossible since C' has at most 2 fixed points by ¢ on it.
If k = 1, then ny = 2 where k,2 = k + n4/2 + 2a. Applying Lemma 2.1.10 on C’
we get that it has 3 points of type P%7, 2 points of type P*® and one point of type
P35 By Proposition 2.1.8 we have that N = 8 and so C has two fixed points by o
(of type P%7 and P30 respectively). Thus o acts as an automorphism of order 4 on
C. Finally if £ = 0, then since k,2 = 2 = ng/2 + 2a we get ng = 0,4 and a = 1,0. If
ng = 0 then N =2, (n2,n3) = (2,0) and r = [ by Proposition 2.1.8. Thus o acts
on C" as a rotation with no fixed point on it. If ng = 4 and @ = 0, then o acts as
a reflection on . Such that (ng,n3) = (0,2) and r — I = 4 by Proposition 2.1.8.
Observe that o acts on C' as an automorphism of order 4 in this case (when k& = 0).
(i) 1,2 = 0:

By equality (1) in [2, Theorem 8.1] we get that 1—2a,2 = m02+1—N;2/2 (where N;Q
is the number of fixed points by o2 on C). Thus m,2 = N(;Q/Q — 2a,2. Since N;Q:
0 or 4 and a,2 € 2Z by Remark 2.1.7, then (mgz,N;2,aaz) = (2,4,0) and o? acts
on C as an involution. By [2, Proposition 1| one can find that 2k,2 = 10 — m,2 = 8
and so ky2 = 4. On the other hand, by the same previous argument and since
ky2 = 4 we get that C’ is a reducible fiber containing four fixed rational curves by
0%. So by checking all the possibilities of Kodaira types for fibers one gets that
C' is of type Ipr such that M > 8. In fact all components of Iy; are preserved
by 0% and a component which is not fixed by o? intersects two fixed ones, so that
M = 2k 4. On the other hand, we have that k,4 = ky2 + (N2 — N(;Q)/2+2agz, since
(N 5, a,2) = (4,0) and N, = 2k,2 + 4 by [2, Proposition 1] we get k,+ = 2ky2. So
that M = 2k 4 = 2(k,2) = 4k,2. Hence C" is of type ;g in this case (where k> = 4).
If &k # 0, then o would preserve each components of C'. Thus a = 0, k =
2, (n2,n3,n4) = (6,4,4) by Lemma 2.1.10. Otherwise k = 0 thus either ny = 4,a =1
so o acts as a reflection on C/, or ny = 0,a = 2 then o acts on C' as a rotation with
no fixed point on it.

Finally, to find the invariants r,[ and my of ¢ in all the previous cases we use the facts
that r+1 =r,2, 2m; = m,2 and the relation N =2+ r — [ — 2k in Proposition 2.1.8. O

2.4 The case when ¢? acts as the identity on the Picard group.

~Y

In this section we will assume that m = [, = 0 (i.e. 02 acts as the identity on S(o%) =
Pic(X)). We recall first some notations. Let g, for ¢ = 1,2,4 denotes the genus of the
curve C' C Fix(c'), 2h the number of interchanged points by ¢ on the curve C, and we
denote by N;i for i = 1,2 to be the number of isolated fixed points by ¢’ on C (for
simplicity we will just write N' for i = 1).

Theorem 2.4.1. Let o be a purely non-symplectic automorphism of order 8 on a K3
surface X such that o® acts trivially on Pic(X) = S(o*). Then the invariants of the fived
locus of o, the lattice S(o*) = S(0?) appear in Table 2.4 see also Table 2.3 for g = 1.
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r I m (n2,n3,n4) N’ h k' a g S(o%)

1 1 5 (2,0,0) 2 1 0 0 9 U(2)

6 0 4 (5,1,0) 4 0 1 0 7 U® Dy

4 2 4 (1,1,2) 2 2 0 0 6 U(2) @ Dy
6 0 4 (5,1,0) 6 0 10

7 3 3 (0,2,4) 2 1 0 0 5 U(2) ® Es
9 1 3 (2,0,0) 2 1 0 1

9 1 3 (4,2,2) 2 1 1 0

9 1 3 (4,2,2) 4 1 1 0 4 U @ DY?

7 3 3 (0,2,4) 2 3 0 0 3 U(2) ® DY?
5 5 3 (2,0,0) 2 3 0 1

8 6 2 (1,1,2) 0 2 0 1 3 U®Es® Dy
12 2 2 (3,3,4) (4-0)  (0-2) 10

10 4 2 (5,1,0) 4 0 |

14 0 2 (7,3,2) 4 0 2 0

8 6 2 (1,1,2) 2 2 0 1 2 U(2) ® Es ® D4
12 2 2 (3,3,4) 2 2 10

Table 2.4: The case m =0,g,4 > 1.

Proof. Since o2 acts trivially on Pic(X) = S(o?), then 2m = [,» = 0 and by [2, Proposition
5] we have 45 = 2a,2 = 0. So that the invariants of the fixed locus of o% are one of the
cases appearing in Table 5 of [2, Theorem 6.1] that is:

M2 192 | N1 N, kyo go, S(o?)

0 22 2 0 10 U
20 4 0 9 U(2)

8 62 4 1 7 U® Dy
60 6 1 6 U(2) ® Dy

6 10]6 2 2 6 U & Eg
0|4 4 2 5 U(2)® Es
02 6 2 4 U & D$?
mwlo 8 2 3 U(2) ® DY

4 1416 4 3 3| UsDsoEs
14|14 6 3 2 |UQ2®Di®E;s

2 18[10 2 4 2 U & ES?
188 4 4 1| UQ2aES

Here Ny = N2 — N(;Q denotes the number of isolated fixed points of o

contained in smooth rational curves.

Observe that the fixed points by o on C are of type P>7 and P30 since o acts on C as an
automorphism of order four. By Riemann-Hurwitz formula applied to the automorphism

o on C we have that:

29(C) — 2 =deg (0)..)(29(D) — 2) + degR,
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where D = C/(0),,) is the quotient curve and R is the ramification divisor. Since deg (o.,) =
4 (where o acts on C as an automorphism of order four) we get:

29(C) — 2 =4(29(D) — 2) + deg R,
thus
29(C) +6—deg R
< =
Such that deg R = 3(N') + 2k (since o acts as an order four automorphisms on C') where

N’ denotes the number of fixed points by ¢ on C and 2h the number of interchanged points
by ¢ on it. Since g(D) € Z>o we have:

9(D).

29(C)+6 —3N —2h=0 mod 8. (1)

We will now discuss each case of the previous table separately to obtain the complete
classification of order 8 automorphisms ¢ when m = 0. At first, it is useful to recall some
of the relations which will be used later, that are: ky2 = k+ny/2+ 2a, N;z = N’ +2h and
Ni = (na +n3) — N + 4A where 24 is the number of smooth rational curves which are
exchanged by o and invariants with two isolated fixed points of o2 (see Remark 2.1.9).

g(C) =10: Observe that ky2 = 0 in this case, thus by Proposition 2.1.8 we have
ng + n3 = 2 where k = 0. Since N(;Q = 2 by (I) we have that (N',h) = (0,1) (where
N;Q =N + 2h). Hence the two fixed points by o are contained in the smooth rational
curve fixed by ¢? and invariant by o%; i = 1,2. So that no = n3 = 1 by Remark 2.1.11,
and ng = 2 by Proposition 2.1.8. This gives a contradiction with k,2 = 0. In fact the two
fixed points of type P*% are contained in a fixed rational curve of o2 (see Remark 2.1.9).
g(C) =9 : Since N(;Q = 4 by (I) we get that (N',h) = (2,1). On other hand, by Propo-
sition 2.1.8 and since k,2 = k = 0 we have (na,n3,n4) = (2,0,0). So that the two fixed
points by o on C' are of type P>7.

g(C) =7:Since N, = 4 by (I) we have that (N, h) = (4,0), (0,2) (where N_, = N'+2h).
Observe that if (N, k) = (4,0) and k = 0, then ny = 2 since k,2 = 1. By Proposition 2.1.8
we get no = ng = 1 which contradicts N =4 (in fact N < (ng +ng3) since the fixed points
by o on C are of type P?>7 and P35). If k = 1 then ny = 0 (where k,2 = k = 1) and so
(na,n3) = (5,1) by Proposition 2.1.8. Observe that »r = 6 = r,2 and [ = 0 by Proposition
2.1.8, hence o acts trivially on Pic(X) in this case. On the other hand, if (N',h) = (0,2)
then ng +n3 = 2 = Ny. Thus nyo = ng = 1 since this two fixed points are contained in
smooth rational curve (see Remark 2.1.11). Thus & = 0 and nq = 2 by Proposition 2.1.8.
In this case we have that Pic(X) = S(0?) 2 U @ Dy4. Thus by Proposition 2.2.1 and since
g(C) > 4 we know that the K3 surface X carries a o—invariant elliptic fibration with
singular fiber of type Ij,such that C intersects each fiber at three points, thus it meets
three components of I§ of multiplicity one. Since N "=0and h =2 we get that the four
fixed points of 62 on C are exchanged two by two by o, but this is not possible since the
fibration is o—invariant.

g(C) = 6,ky2 =1: Using the same argument we get that (N',h) = (2,2) , (6,0) and
(n2,ns,n4, k) = (1,1,2,0), (5,1,0,1) respectively, where N;Q = 6 in this case. Observe that
[ = 0 when (ng,ns,n4) = (5,1,0) by Proposition 2.1.8. Thus ¢ acts trivially on Pic(X) in
this case.
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g9(C) =6,k,2 =2 : Since N(;Q =2 by (I) we get (N',h) = (0,1). This means that o does
not fix any point on C' and the fixed points by it are contained in smooth rational curves.
Thus no = n3 by Remark 2.1.11, so that ny = 242k by Proposition 2.1.8 which contradicts
the equality ky2 = 2 = k 4+ ny/2 + 2a. In fact we get 2 = 2k 4+ 1 by the previous relations.
g(C) =5 Since NC;Q = 4 by (I) we get (N',h) = (2,1). Since k,2 = 2 by the re-
lation k,2 = k 4+ n4/2 4+ 2a and Proposition 2.1.8 we have the following possibilities:
(k,a,n2,n3,n4) = (1,0,4,2,2),(0,0,0,2,4) and (0,1,2,0,0) where the case k = 2 is not
possible since otherwise ng + n3 = 10 > N_2.

g(C) =4: Since N;z — 6 thus either (N',h) = (0,3) or (4,1). Using the same argument
we obtain that the case (N/, h) = (0,3) is not possible. Observe that since N' =4 we get
ng + ng > 4 thus k > 1 by Proposition 2.1.8. On the other hand, k& # 2 since otherwise
ng + ng = 10 > N,2 by Proposition 2.1.8 again. Thus k£ = 1 and (ng,ns3,n4) = (4,2,2)
where k2 = 2.

9(C) =3,k,2 =2 : Since N;Q =8 by (I) we get (N',h) = (2,3). Observe that ng 4+ n3 =
N’ = 2 where N(;Q = N,2 = 8 in this case. So that k& = 0 by Proposition 2.1.8 and either
(k,a,n2,ns3,n4) equals (0,1,2,0,0) or (0,0,0,2,4).

g(C) =3,ky2 =3: Since N, = 4 by (I) we have that (N',h) = (0,2),(4,0). On the
other hand, since k,2 = 3 we get £k < 2. In fact k cannot be equal 3 since otherwise
na+ns = 14 > N, 2 by Proposition 2.1.8, which is impossible. If k = 2 then (n2,n3) = (7, 3)
by Proposition 2.1.8 where ny = 2 in this case (since k,2 = 3 = n4/2 + k + 2a). Thus
N, =N =4since ny+n3 =10 = Ng2. Observe that r = r,4 = 14,1 = 0 by Proposition

1)

2.1.8 and so o acts trivially on Pic(X).
If £ =1 then (ng4,a) either equals (0,
(na,n3) = (5,1) so we have (N ) (4,
2.1.8 and that corresponds to ( Jh) =
possible.

Finally if k = 0 then ng + ng = 2 by Proposition 2.1.8. Thus (N, ) = (0,2) (where the
fixed points by o on C are of type P>7 or P39). So that no = ng = 1 by Remark 2.1.11
(since the two fixed points are contained in a smooth rational curve). Thus ngy = 2 by
Proposition 2.1.8 and we are in the case (k,n4,a) = (0,2,1).

9(C) =2,k,2 = 3: Since N;2 = 6 we have (N',h) = (2,2). As we have seen before, the
case k = 3 is not possible since ny + n3 > N2, and if k£ = 2 by Proposition 2.1.8 we get
ng + n3 = 10 = N,2 which is also not possible since N(;2 #* N'. If k=1 then no +ng =6
by Proposition 2.1.8. Since N' = 2 the last four fixed points by o (of type P27, P3:6)
are contained in smooth rational curves, so that ng,ng > 2 (see Remark 2.1.11). Hence
(na2,n3,n4) = (3,3,4) by Proposition 2.1.8 and we are in the case (k,n4,a) = (1,4,0).
If kK = 0 then no +ng = 2 = N'. Observe that n4 < 4 by Proposition 2.1.8 and so
(k,a,n2,m3,m4) = (0,1,1,1,2).

9(C) =2,k,2 =4 Since N;Q = 2 by (I) we get (N',h) = (0,1), so that the fixed points
by o of type P%7, P36 are contained in smooth rational curves. Thus ng = ng = 1 + 2k
and ng = 2 + 2k by Proposition 2.1.8 (see Remark 2.1.11). On other hand, we have that
k,2 = k + n4/2 + 2a thus by previous remark we get 4 = 2(k + a) + 1 which gives a
contradiction. Hence the case ¢(C) = 2, k,2 = 4 is not possible.

9(C) =1,k,2 = 4: Since N;g = 4 by (I) we get (N',h) = (2,1). Since o? fixes an el-
liptic curve C' the K3 surface X carries an elliptic fibration 7¢ : X — P! has C as a
smooth fiber (as we have seen in Section 2.3). Moreover, the fibration m¢ is invariant by

or (4,0). If ng = 0 by Proposition 2.1.8 we get
0). If ny = 4 then (n2,n3) = (3,3) by Proposition
(0,2). Both cases (N',h) = (4,0) = (0,2) are
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o' i =1,2,4 and o acts with order 8 on the basis of the fibration and fixes two points
on it corresponding to the elliptic curve C' and another fiber C’. All curves fixed by ¢
are contained in the fibers of 7o, that because they are disjoint with C. Since k,2 = 4
the fiber € is reducible and it has four fixed rational curves by 2. So by checking all the
possibilities of Kodaira types for fibers one gets that C' is of type Ips such that M > 8. On
the other hand, o2 preserved each component in C” since ay2 = 0. So that by apply Lemma
2.1.10 we get that C’ is of type I1s. If k # 0, then o would preserve each components of
C'. Thus a = 0, k = 2, (n2,n3,n4) = (6,4,4) by Lemma 2.1.10. Otherwise k = 0 thus
either ny = 4,a = 1 so o acts as a reflection on €', or ny = 0,a = 2 then o acts on C' as
a rotation with no fixed point on it. This cases appeared in Table 2.3.

Finally, to find the invariants r,l and m of ¢ we use the facts that r +1 = r,2,2m; =
mg2 and the relation N =2+ r — [ — 2k in Proposition 2.1.8. O

Corollary 2.4.2. Let o be a purely non-symplectic automorphism on a K3 surface X such
that o acts trivially on Pic(X) (i.el=m =0). Thenk >0 and a = A = h =0, moreover
all cases in the table do exist.

mi r N’ N (ng,ng, nyg) Jot k S(ot)

i 6| 4 6 (5,1,0) 71 U Da

i 6] 6 6 (5,1.0) 6 1 U(2) ® Dy
5 14| 4 12 (7,3.2) 3 2| U® Do By

Table 2.5: The case rk Pic(X) = S(o) =1 .

Proof. These cases are obtained by Theorem 2.4.1. On other hand, we can find these cases
directly from the assumption | = 0 without using Theorem 6.1 in [2], see Appendix B
where we have given an independent proof (not based on the classification of order four
automorphisms [2|) of propositions in [14, §5].
On the other hand, we give examples showing the existence of all these cases in Section
2.8.

O

2.5 The curve C is of genus g > 1.

We now assume that the curve C' C Fix(c*) is of genus g > 1 (the case when g = 1 has
already been studied in § 3). Thus the other curves fixed by o* are smooth rational by
Theorem 2.1.4. If the curve C is contained in the fixed locus Fix(o') for i € {1,2,4} then
we denote by g, its genus (g, stands for g 1).

2.5.1 The curve C is contained in Fix(c?).

In this part we prove first that the genus of curves in Fix(o) is at most one, then we classify
the case with Fix(c?) contains a fixed curve C of genus g(C) > 1. We recall some notation
that will be used here. Let N’ denotes the number of fixed points are contained in C,
4s = 2a,2 denotes the number of smooth curves that are permuted by o, interchanged by
o2 and fixed by 0%, and let N,> be the number of isolated fixed points by o2.
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Theorem 2.5.1. Let X be a K3 surface and o be a purely non-symplectic automorphism
of order eight on it such that Pic(X) = S(o*) . Then if C C Fix(o) we get g(C) < 1.
Moreover we have that if o fizes a curve of genus gy2 > 1 then the invariants associated
to o are given in Table 2.6 .

my m r L] (ng,nz,mg) N Nk a s g S(o%)

3 3 3 1 (1,1,2) 4 2 0 0 2 U AP®

2 4 4 2 (1,1,2) 4 2 0 0 1 2| UveAVoEs
U®Dy® Dsg

Table 2.6: The case g,2 > 1.

Proof. If o fixes a curve C of genus g, > 1, then the curve C is also contained in Fix(c?)
(since Fix(o) C Fix(0?)) so that by [2, Theorem 4.1] we get k,2 = 0. Thus k = 0 and

a= 3 (1-g(C)=(1-g(0) < -1

C;CFix(o)

This gives the inquality (ng + n3) < —2 by Proposition 2.1.8 which is clearly not possible.
Hence if C' is contained in Fix(o) then g(C) =0, 1.

We now assume that Fix(o?) contains a curve C of genus g, > 1, then the invariants
of 02 are given in Table 2 of [2]. Since m,2 = 2m; is an even number and a,> € 2Z by
Remark 2.1.7, so there are just two possible cases of invariants associated to o2 that are
(go2, 042,752, Ny2) = (2,0,4,2) and (2,2,6,2). Since g,2(C) = 2 in these two cases, then
by Riemann-Hurwitz formula we have that:

29(C) — 2 = deg(0.)(29(D) — 2) + degR,

where D = C/(0|,) and R is the divisor of ramification. Since deg(o|,) = 2 (where o acts
as an involution on C) we get:

2g(C) — 2 =2(29(D) — 2) + degR,

and so
6 —degR

4

such that degR = N’ in this case, since ¢ acts as an involution on C. Hence ¢ has either
2 or 6 fixed points of type P*® on it (i.e N = ny = 2 or 6 where k,2 = 0). Observe that
since k = 0 by Proposition 2.1.8 we get nq +2no = 4, hence ngy =2 = N and ng = ng = 1.
To find the invariants of the lattice S(o) for the first case using the fact that (r,2,l,2, my2)
= (4,6,6) by |2, Theorem 4.1] we get immediately that 2m = [, = 6 and 2m; = m,2 = 6.
Moreover we have that r +1 = 7,2 =4 and N =4 = 2+ r — [ by Proposition 2.1.8, so
r =3 and [ = 1. Using the same argument we obtain the values of r, I, m and my for the
second case appearing in Table 2.6. Here (r,2,l,2, my2) = (6,8,4). O

9(D),

Corollary 2.5.2. Let X be a K3 surface and p be a purely non-symplectic automorphism
of order 16 acts on it and such that Pic(X) = S(p®). Then p does not fix any curve of
genus bigger than one.
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Remark 2.5.3. o We can say more generally that the fized locus of a purely non-
symplectic automorphism of order 29 ; q > 3 does not contain a curve C of genus

g(C) > 1.

e By Theorem 2.5.1 we get that Pic(X) = S(0*) = U@ L such that L isomorphic to a
direct sum of root lattices of type A1, FEg, Dy, Dg. Thus by Proposition 2.2.1 the K3
surface X carries a o*-invariant elliptic fibration m with unique section fized by o*.
On the other hand, by Proposition 2.2.1 again the automorphism ;i = 1,2 does not
preserve this elliptic fibration since C' C Fix(0?). Hence for each generic fier F of
7 we get F and o?(F) intersect in 3 points only with multiplicity (1,1,2) such that
these three poinls are also the intersection points with the curve C. This explain why
we can not use Proposition 2.2.1 here to prove that ky2 > 1.

Remark 2.5.4. In the Appendiz A we see that if fy is an homogeneous polynomial of
degree 4, that defines a smooth generic surface X in P23, then it does not exist o of order
8 acting on X such that fy is an affine invariant of o.

2.5.2 The curve C is fixed only by ¢! and Fix(c) contains a rational curve.

Now let o be a purely non-symplectic automorphism of order eight on a K3 surface X.
Such that 2m = [,> > 0 and Fix(o) contains at least one smooth rational curve (i.e. k > 0)
and the fixed curves by o2 are also rational (the case of Fix(c) contains only isolated points
is studied in Section 2.7). Then the fixed locus of ¢ and of o are given as follows :

Fix(6?) = By U~ U B, U{p1,...PN , },

Fix(o') = CU{E U UE; ,} U{G1,...Gn, o} U{RUF U---UF, ,UF, ,}.

Where C' is a curve of genus g,« > 0, E;, G;, F; are smooth rational curves such that
0%(F;) = F,, 0%(G;) = G; and each G, contains exactly two isolated fixed points by o2
where N; denotes the number of isolated fixed points by ¢ on smooth rational curves.
We recall the notations that will be used here: we denote by 2h the number of inter-
changed points by ¢ on the curve C; 24 be the number of smooth rational curves which
are interchanged by ¢ and invariants by ¢? with two isolated fixed points on each one of
them. Finally as in the previous section we denote by N " N;Q the number of isolated fixed

points by o respectively o2 on C.

Remark 2.5.5. By looking in the fized locus of the purely non-symplectic automorphism
of order eight o and its square o2 and using the fact in Remark 2.1.9 one can get that there
are relations between the isolated points and smooth rational curves which are fived by o

and o® given as follows:
2.5.1

2.5.2
2.5.3

ky2 =k +2a +ny/2.
N,2 = (ng + n3) + 4A + 2h.
N, =N +2h.

(
(
(
(2.5.4

)

)

)
Ny = (ng +n3) — N +4A. )
so by Proposition 2.1.8 we have

Ny =2+4(k+A)— N (2.5.5)
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And by computing the difference x(Fix(c?)) — x(Fix(c)) topologically and using the
Lefschetz’s formula we get that:

2a+2A+h=1—m. (2.5.6)

Theorem 2.5.6. Let o be a purely non-symplectic automorphism of order 8 on a K3
surface X such that k > 0 and the fized curves by o® are rational. Let gy,a = g(C) > 1 be
the genus of the curve C' C Fix(o?). Then o fizes exactly one smooth rational curve and
we are in one of the cases which appear in Table2.7.

/

m T I| N N (nong,na)| a k A h s| ke N  gp
1 13 3| 10 2 (3,3.4) 0 1 0 2 1| 3 6 2
1 7 1| 6 4 (5,1,0) 0 1 0 0 0] 1 4 3
2 8 2 6 4 (5,1,0) 0 1 0 0 0 1 4 3

Table 2.7: The case gy > 1, C ¢ Fix(c?).

Proof. Observe that the automorphism o acts as an automorphism of order four on C
such that the fixed points by o on C are of type P?7 and P35. On the other hand, by
[2, Theorem 8.1] we get gy« < m,2 and the invariants associated to o2 are given in the
following table:

m02+l02‘k2‘gg4<‘a02<

g — —=
4 3 3 2
6 2 ) 3
8 1 7 4

Observe that if ky2 = 3 then ;2 = m, 2 = 2 and a,2 is either equals to 0 or 2. In fact
we have that [,2 = 2m > 0 and m,2 = 2m; > 0 are even numbers, and 2a,2 = 4s € 4Z by
Remark 2.1.7.

To compute the number of fixed points of 02 on C' we replace the possible values of the
invariants of o2 in relations (1) and (2) of [2, Theorem 8.1] that are :

Jga — 2052 =my2 —l2 +1— N;2/2,

das <8 —2k,2 + N;_Q + 1,2 —mg2.
Where g,«+ < mg2 in this case as we have seen previously. We show for example that
for (ly2,my2,ky2,a42,9,4) = (2,2,3,0,3) we get N(;Q = —4 which is not possible, and if
(ly2,my2, ky2, 042, gs1) = (2,6,1,4,3) then N;Q = 12, cotradicting the fact that N2 > N;Q
where N,2 = 6 by [2, Proposition 1]. By a similar argument we find the possibilities for
the invariants of o2 which appears in the table below :

Ny ky2 | ay2 | goa | ly2 mge N(;Q
10 3 2 2 2 2 6
8 2,0 (322 1 (0,2)
2 3 2 4 8
6 1 0| <5 | 2 6 | (10 —2g,4)
2 3 4 4 4
4 2 6 2 6
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By Riemann-Hurwitz formula applied to the automorphism ¢ on C we have that :
29(C) — 2 = deg(0,)(29(D) — 2) + degR,

where D = C/ < 0|, > and R is the divisor of ramifiction. Since o acts on C as an
automorphism of order four we get deg(a‘c) =4 and degR = 3N’ + 2h, where we denoted
by N’ the number of fixed points by ¢ on C and by 2k the number of interchanged points

by o on it. Hence
2g(C)+6— (3N +2h)=0 mod 8, (I)

since g(D) € Z>o. Now we give a detailed explanation of each of the cases in the previous
table separately.
(goas N(;Q, ky2,a,2) = (2,6,3,2) : By Riemann-Hurwitz formula and since o2 fixes 6 points

on C where N;Q = 6 we find that o exchanges two by two four points on C and fixes the last
two. On the other hand, by (2.5.4) of Remark 2.5.5 we have N; =4 = (ny+n3) +4A4 — 2,
thus (ng + n3) < 6. While by Proposition 2.1.8 we have (ng + n3) > 6 since k > 1. Hence
(n2 +mng) = 6 and k£ = 1 such that two of these six points are on C' and the other four are
contained in two rational curves that are fixed by o* and invariants by o2. The two smooth
rational curves fixed by o2 (here k,» = 3 and k = 1) either are invariants by o with two
fixed points of type P*5 on each one of them, i.e (ng4,a) = (4,0), so (n2,n3) = (3,3) by
Proposition 2.1.8, or they are exchanged by o so that (n4,a) = (0,1) and (n2,n3) = (5,1)
by Proposition 2.1.8 again. Observe that the second case is not possible by Remark 2.1.11
since a smooth rational curve which is invariant by o and ¢? contains exactly one fixed
point of type P%7 and another one of type P39,

(goas N o, ko2, a02) = (3,0,2,0) : Since N‘;Q = 0 we have (N',h) = (0,0) (where N;Q =

0-27

N + 2h) and that is not possible by Riemann-Hurwitz formula.
(goas N o, ko2, a02) = (2,2,2,0) : By (I) and since N‘;Q =2 we get (N',h) = (0,1), so that

0-27

all the fixed points by ¢ are contained in smooth rational curves that are fixed by o*, thus
ne = ng by Remark 2.1.11 and so nqy = 2 + 2k by Proposition 2.1.8. On the other hand,
since k > 0 then ng > 4. So that k,2 = k + n4/2 + 2a > 2 which contradicts k,2 = 2.
(9047N;727 ky2,a452) = (3,8,2,2) :By relation (I) and since N(;Q =8 we get (N',h) =(2,3).
On the other hand, since k > 0 then ns + ng > 6 by Proposition 2.1.8. So that o fixes at
least four points on two rational curves (where N' = 2) which is not possible. In fact all
the fixed points by o2 are contained in C so that Ny = N2 — N(;Q = 0 (see relation (2.5.4)
in Remark 2.5.5).

(gg4,N(;2, ky2,a,2) = (5,0,1,0) : By relation (I) and since N;g =0 we get (N, h) =(0,0),
so that the isolated fixed points by ¢ are contained in smooth rational curves. This means
that no = ng (see Remark 2.1.11), thus by Proposition 2.1.8 we have ny = 2 4 2k which is
clearly not possible since k,2 = k =1 (where k > 0).

(904,N:72, ky2,a52) = (4,2,1,0) : Since N(;Q = 2 by relation (I) we get (N/,h) =(2,0). On
the other hand, since k,2 = k = 1 (where k > 0) we get ngy = 0, so that (ng,n3) = (5,1)
by Proposition 2.1.8 which gives a contradiction. In fact o fixes four points on two smooth
rational curves where (N, N') = (6,2) thus ny,n3 > 2 by Remark 2.1.11.

(9047N(;27 ky2,a52) = (3,4,1,0) : By relation (I) and since N(;Q = 4 we get (N, h) either
equal to (4,0) or (0,2). Observe that since k,2 = k = 1 (where k£ > 0) we get ny = 0 and
so (ng,n3) = (5,1) by Proposition 2.1.8. Hence the case (N',h) = (0,2) is not possible
since the six fixed points by o are contained in smooth rational curves and so ny = ng (see
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Remark 2.1.11). The case (N, h) = (4,0) is possible and appears in Table 2.7.
(goas N o, ky2,a,2) = (3,4,1,2) : By the same argument in the previous case we get that

o2
(N', h)=(4,0) and (ng,n3,n4) = (5,1,0).
(go4, N(;Q, ky2,a4,2) = (2,6,1,0) : Since N;Q = 6 by relation (I) we get (N, h) =(2,2), hence
o fixes four points on two smooth rational curves and so ng,ng > 2 (see Remark 2.1.10).
This is not possible since (ng,n3,n4) = (5,1,0) by Proposition 2.1.8 where k,2 = k = 1.
By the same argument we can exclude the case (g,4, N(;Q, ky2,a,2) = (2,6,1,4).

Using the facts that r+1 = r 2, 2m = l,2, 2m; = m,2 and the relation N = 24+r—[—2k
in Proposition 2.1.8 it is easy to compute the invariants r,I,m, m; of 0. More precisely,

the invariants of o in this table verify the relation (2.5.6) in Remark 2.5.5.

O

2.6 The fixed locus Fix(c?) only contains rational curves.

In this section we assume that Fix(c?) contains only smooth rational curves and that at
least one of them is fixed by o (i.e kK >0 ).

Theorem 2.6.1. Let X be a K3 surface and o be a purely non-symplectic automorphism
of order eight on it. If Fix(c) contains a smooth rational curve and all curves fized by o*
are rational, then (k, A, N,a) = (1,1,10,0) and (na2,n3,ng) = (3,3,4). The corresponding
invariant of S(o*) are (r,1,m) = (13,3, 1).

Proof. By |2, Theorem 5.1] and by excluding the cases when m,2 and a,2 are odd numbers
(since m,2 = 2l and a,2 € 2Z by Remark 2.1.7) we get that the possible invariants for
o2 are (ry2,my2, Ny2, kg2, a,2) = (10,4,6,1,0), (16,2,10,3,0) and (12,2,6,1,2). Observe
that since the involution o fixes only rational curves, all isolated fixed points by o are
contained in smooth rational curves. So that ny = ns by Remark 2.1.11 (where each
invariant rational curve by o either contains two points of type P*® or one point of type
P27 and another one of type P3%). Hence by Proposition 2.1.8 we have that ny = 1+2k and
ng = 2+ 2k. Since k > 0 then ng > 4 which gives that k2 > 3 (where k,2 = k+n4/2+ 2a,
see Remark 2.1.9). That excludes the first and the third cases of the possible invariants of
o2. For the second case we have that k = 1 , ngy = 4 and a = 0 since k,2 = 3. So we get
ng = ng = 3. Moreover we have that 2m =12 =2,2m; =my 2 =2,r+ 1 =17r,2 = 16 and
by Proposition 2.1.8 we have r — [ = 6.

O

2.7 The fixed locus Fix(c) has only isolated points.

Let o be a purely non-symplectic automorphism of order eight on a K3 surface X that
fixes only isolated points and m > 0 (the case m = 0 is discussed in Section 2.4) and the
genus of the fixed curves by o is g(C) # 1 (the case with g(C) = 1 and k = 0 is studied
in Section 2.3). It follows from Proposition 2.1.8 that Fix(o) contains exactly two points
q1,q2 of type P> or of type P39, or one point of each type. Moreover, the fixed locus of

o2 is either as :

Fix(0?) = CU(FUF) - U(F,UF,)U EyU...E,__ v U{q,q2.p1,--,psa},
2
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if o2 fixes a curve C of genus g(C) > 1, or as follows:

Fix(02) =(FUF)---U(F,UF,)U E1U... E,,2U {q1,92,p1, -, paat U{p1, -, pon }-
Where each E; is a smooth rational curve containing 2 fixed points by o of type P*® | N '
denotes the number of the remaining fixed points on C' | and {pll, . ,p;h} are the points
on C that are exchanged by o and fixed by o2

Theorem 2.7.1. Let o be a purely non-symplectic automorphism of order eight on a K3
surface X having only isolated fixed points, such that m > 0 and the genus of the fired
curves by ot is g(C) # 1. Then o fives al most 6 points and we are in one of the cases
appearing in Table 2.8.

q
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Table 2.8: The case k = a =0,m > 0.

Proof. By Proposition 2.1.8 since a = k = 0 we get that (ng2 + ng) = 2 and ng < 4 where
2n3 = ny4 in this case. More precisely the possible cases for (ng2,ns3,ng) are (2,0,0,2) ,
(1,1,2,4) and (0,2,4,6). We can find the invariants related to o by discussing the different
cases for the fixed locus of 02 and o*.
o* fixes a curve C of genus g(C) > 1:

We can assume that C' ¢ Fix(0?) otherwise we have discussed this case already in Theorem
2.5.1. Since C is fixed by ¢ then C is also invariant by ¢. Hence o acts on C as an
automorphism of order four with at most two isolated fixed points on it. In fact the fixed
points by o on C are of type P27, P36 thus N’ either equals 0 or 2 (since (ng 4 n3) = 2).
On the other hand, by Riemann-Hurwitz formula applied to the automorphism ¢ on C we
have that:

2g(C) — 2 =4(29(D) — 2) + degR,

thus
29(C) 46 —degR
< =

9(D).
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Such that degR = 3N’ +2h (as we have seen in Theorem 2.5.6). Since g(D) € Zsq we get:
29(C)+6—3N —2h=0 mod 8. (1)

Here we distinguish the two following cases:

i) Fix(c?) has only isolated fixed points :
By relations (2.5.1) and (2.5.2) of Remark 2.5.5 we have that k,2 = 2a 4+ n4/2 and N,2 =
2+ 4A 4 2h (since k = 0 and so na + n3 = 2 by Proposition 2.1.8). Since k,2 = 0 by
[2, Proposition 1] we get N,2 = 4. This givesa =ny = A =0and h = 1. Since ngy =0
by Proposition 2.1.8 we have (n2,n3) = (2,0). Observe that N' = 2, otherwise o would
fix two points of type P27 on a rational curve and this is not possible by Remark 2.1.11.
Hence by (I) we get that the genus of the curve C' C Fix(c?) is either g(C) = 5 or 9. We
want to show that g = 9 is not possible. One can deduce it easily by the Tables 6 and 5
of [2], but we give here a self-contained argument. Since 2a,2 € 4Z by Remark 2.1.7 and
ky2 = 0 we get ko4 € 4Z. In fact all isolated fixed points by o2 are contained in C since
(N',h) = (2,1) and N,2 = 4 (here N,» = 4 = N+ 2h) so that k,a = 2a,2 € 4Z. Thus
by [9, §4], see also [4, Figure 1|, we have that (g,4,ks,7,4) = (5,0,6),(5,4,10),(9,0,2)
such that S(o%) = U(2) @ AP*, U @ DJ?,U(2) respectively. Observe that for the second
case by applying Proposition 2.2.1 we know that the K3 surface X carries a o—invariant
jacobian elliptic fibration 7 with unique section fixed by ¢, which contradicts the fact that
N =N=2 (i.e. o does not preserve any rational curve so that the unique section of 7
is not invariant by o). Hence we have two possible cases that are (g4, kya,754) = (5,0,6)
(this is the first case in the table) and (g 4, kya,754) = (9,0,2). Moreover by (2.5.6) of
Remark 2.5.5 we get [ = m+1 (where A = a = 0 and h = 1) such that » = [ by Proposition
2.1.8. Thus rja =r+1+4+2m =4m+ 2. So that m = 1, r = | = 2 for the first case and
m = 0, r = [ = 1 for the second one, observe that the second case is not possible since
m = 0 (which contradict with our assumption that m > 0) and it has already appeared in
Table 2.4 of Theorem 2.4.1.

ii) Fix(c?) contains smooth rational curve : Since k,2 > 0,m > 0 then as we have seen

in Theorem 2.5.6 the possible cases of invariants of o2 are given in the following table
(where N;Q denotes here the number of isolated fixed points of o contained in C) :

/

No2 ko2 | agz | goa | lyz Mg N,
10 3 2 2 2 2 6
8 2 0 (3,2 2 4 (0,2)
2 3 2 4 8
6 1 0] <5 | 2 6 | (10 —2g,4)
2 3 4 4 4
4 2 6 2 6

We have seen, at the beginning of this proof, that ny < 4 and no + n3 = 2, so we get
N’ € {0,2} where the fixed points by o on the curve C are of type P>7, P36, Observe
that if N' = 0 then ng = ng = 1 by Remark 2.1.11 (in fact the fixed points by ¢ are
contained in smooth rational curve in this case) then ng = 2 by Proposition 2.1.8.

If | g(C) = g,+ = 2| then by (I) we have that (N',h) € {(0,1),(0,5),(2,2)} and by the
previous table we get (N;_Q,koz) € {(6,3),(6,1),(2,2)} (recall that N;Q = N +2h). If
(N,2,ky2) = (2,2) then (N',h) = (0,1) and we show that this case is not possible. In
fact since N' = 0 in this case, we get that (ng,ns,ns) = (1,1,2) by the previous remark,
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which is clearly impossible since k2 = 2 = 2a+1 (recall k,2 = 2a+k+n4/2 , ny = 2 and
k = 0). On the other hand, if (N;Q,ko.z):(G,?)) then (n4,a) = (2,1) since ng < 4. Thus

(n2,n3) = (1,1) by Proposition 2.1.8. In the same way we get that (ne,ns,n4) = (1,1,2)
when (N(;27 ky2)=(6,1). These case appear in Table 2.8.

If m then by (I) we have that (N, h)—=(0,2),(0,6) or (2,3). By the previous ta-
ble we get (N_,,k,2)=(0,2),(8,2),(4,1), so that we have in fact (N',h) = (0,2),(2,3)
(the case (N',h) = (0,6) is not possible since it would give N(;Q = 12) and the case
(N;z,k:gz):((),Q) is not possible by Riemann-Hurwitz formula. If (N(;Q, ky2)= (4,1) then

(na2,n3,n4) = (1,1,2) by Proposition 2.1.8. Finally if (N;Q, ky2)=(8,2), then either (n4,a)
equals (0,1) then (n2,n3)=(1,1) by Proposition 2.1.8, or equals (4,0) then (ng,n3) = (0,2)

by Proposition 2.1.8 again. On the other hand if | g(C) = 4| then (N',, k,2)=(2,1) by the

o2
previous table, so that (N, h) =(2,0) by (I) and (ng2, n3,n4) = (1,1, 2) by Proposition 2.1.8.
Finally if | g(C) = 5| then (N_s,kp2) =(0,1), so that N' = h = 0 and (ng, ng)=(1,1,2) by
Proposition 2.1.8.

o fixes only rational curves:
Observe that k,2 > 0 where otherwise we have studied this case already in part (i). Thus
we are in one of the cases given in [2, Theorem 5.1]. Since m,2 = 2l is an even number
and ay2 € 2Z by Remark 2.1.7, we have that (r,2,my2, Ny2, ky2,a,2) = (10,4,6,1,0),
(16,2,10,3,0) and (12,2,6,1,2). Observe that since the fixed points of o are contained
in smooth rational curves by Remark 2.1.11 we get ns = nz = 1, so that ny = 2 by
Proposition 2.1.8. Hence a =1 when k2 = 3 and a = 0 otherwise.

Finally, to find the invariants r, [, m and m; of o we use the fact that r+1 = r 2, 2m =
ly2, 2m; = m,2 and the relation N =2+ r — [ — 2k in Proposition 2.1.8.

O



46 CHAPTER 2. NON-SYMPLECTIC AUTOMORPHISMS OF ORDER 8

2.8 Examples:

In this section we give several examples corresponding to several cases in the classification
of the non-symplectic automorphisms of order eight. We construct all this examples by
using elliptic fibrations on K3 surfaces. The Section 1.3 contains the main definitions and
properties of elliptic fibrations that we need.

Example 2.8.1. Consider the elliptic fibration 7o : X — P! with a Weierstrass equation:
y? =23+ a(t)x + b(t).

where a(t) = at®+b and b(t) = ct® + d with a,b,c,d € C. The fibration 7¢ admits the
order eight automorphism:

U(.T, Y, t) = (Hf, Y, CSt)'

The fibers preserved by ¢ are over 0 and co and the action of ¢ at infinity is:
(2t y /15, 1)) — (=t iy /15, T /1)
The discriminant polynomial of w¢ is:
A(t) == 4a(t)® + 27b(t)% = hyt* + hot'® + h3t® + O(tY),

where
hy = 4a®, ho = 12a%b+ 27¢%, hs = 12ab® + bdcd.

Observe that A(t) has 24 simple zeros for a generic choice of the coefficients. By studying
the zeros of A(t) and looking in the classification of singular fibers of elliptic fibrations
on surfaces (see e.g |17, section 3|) one obtains the following: for a generic choice of the
coefficients of a(t) and b(t) the fibration has 24 fibers of type I; over the zeros of A(t),
both fibers over ¢ = 0 and ¢ = oo are smooth elliptic curves, moreover the automorphism
o fixes pointwisely the fiber over 0 and acts as an order 4 automorphism on the fiber over
oo. This is the first case in Table 2.1. On the other hand, if h; = 0 (a = 0) the fibration
acquires a fiber of type IV* at co by a generic choice of the parameters. This gives an
example for the second case in Table 2.1.

In this case by using standard transformations on the parameters in the Weierstrass
form we get that the number of moduli is 2. In fact both the polynomials a(t), b(t) are de-
pend on 2 parameters, but we can apply the transformation (x,%) — (\2x, A3y) ; A € C*.
to eliminate one of the 4 parameters. Moreover the automorphisms of P! commuting with
t — (gt are of the form ¢t — ut ; p € C*. So we can eliminate a second parameter. This
shows that the family depends on 2 parameters. So that generically rkTx = 12 (where
rkTx = 4m; and m; equals to the number of moduli +1) and rk Pic(X) = 10. And we
remark that by a generic choice of the coefficients the action of o is trivial on Pic(X). By
Shioda-Tate formula rk Pic(X) = 2 +rk MW + > po  (#components of F — 1) so that
the rank of the Mordell-Weil group of 7 is rk MW = 8. This means that the fibration
admits sections of infinite order.

Example 2.8.2. Consider the elliptic fibration 7o : X — P! in Weierstrass form given
by :
y? =23 + a(t)x + b(t).
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where a(t) = at® +b and b(t) = ct® +d with a, b, c,d € C. This elliptic fibration carries
the non-symplectic automorphism o of order eight:

(I‘, Y, t) = (.T, -Y, CSt)'

The fibers preserved by o are over 0,00 and the action at infinity is
(a/th /1 1/t) w— (—a/th, =iy /t°, (S /1)
The discriminant polynomial of w¢ is:
A(t) == 4a(t)® + 27b(t)% = hit* + hot' + O(t®),

where
hi =4a® and hy = 12a%b + 27¢2.

For a generic choice of the coefficients of a(t) and b(t) the fibration has 24 fibers of type
I, over the zeros of A(t) (see |17, section 3|), o acts as an involution on the fiber over 0
and it acts as an order 4 automorphism on the fiber over oo (both fibers are smooth). So
we have an example for the second case in Table 2.2. If Ay = 0 (e = 0) the fibration
acquires a fiber of type IV* at co by a generic choice of the parameters. This is the last
case in Table 2.2. Observe that this fibration is the same as the fibration in Example
2.8.1, considered here with a different automorphism.

Example 2.8.3. Consider the elliptic fibration 7¢ : X — P! in Weierstrass form given
by
y? =2 + a(t)z + b(t),

where a(t) = at® +b and b(t) = ct* + dt'? ; a,b,c,d € C. Observe that it carries the order
eight automorphism
o (z,y,t) — (—x,iy, (It).

For generic choice of the coefficients the fiber over ¢ = 0 is smooth. The automorphism o*

is an involution fixing the smooth elliptic curve over ¢ = 0 and some rational curves in the
singular fiber over ¢t = co. On the other hand, o acts on the elliptic curve over t = 0 as an
order 4 automorphism with 2 isolated fixed points. Moreover it acts as the identity on the
fiber over t = oo, where the action at infinity is

(x/t y /1% 1/t) — (2/t",y /1%, Gs /).
The discriminant of m¢ is :
A(t) = hit® + hot'® + hat® + 463,

where
hi = 4a® 4 27d? |, ho = 12a®b + 5ded , hg = 12ab® + 272

Observe that A(t) has 24 simple zeros for a generic choice of the coefficients. By studying
the zeros of A(t) and looking in the classification of singular fibers of elliptic fibrations on
surfaces (e.g [17, section 3]) one obtains the following cases: for the generic choice of the
coefficients of a(t) and b(t) the fibration has 24 fibers of type I;. If hy = 0 the fibration has
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a fiber Ig at infinity. If hy = ha = 0 we get a fiber I;5. By [5, §3] a holomorphic two form
is given by wx = (dt A dx)/2y and so the action of o on it is o*(wx) = _ngwx = (gwx.
We can go further than that and determine exactly the type of the local action of ¢ at the
two fixed points on the elliptic curve C. We look at the elliptic fibration locally around
the fiber over t = 0. The equation in P? x C is given by:

F(x,y,2,t) = 2y — (2% + (at® + b) 2%z + (ct* 4 dt'?)23) = 0.

Where (x : y : z) are the homogeneous coordinates of P? . Note that the fiber at t = 0 is
a smooth elliptic curve. In fact the curve defined by the equation

fi={z® - 2% - 2%z =0}

is smooth since the partial derivative df/0x,df /0y, 0f 0z are equal to zero if and only if

x =y = z = 0 which is impossible. The two fixed points by ¢ on the fiber over t = 0 are

p:=(0:1:0)andp :=(0:0:1). Thesecond one p' := (0:0: 1) is contained in the chart
; . / OF (2,y,1,0

z = 1. Moreover p belongs to the open set OF/0x # 0, indeed F,(p ) := % = 0.

By [18, §6.4, p.210] the one-form for the elliptic curve in this open subset is:

dy/Fy(p) = dy/(—32% — b).

The action of o here is a multiplication by i : (o*(dy/Fy(p)) = i(dy/Fy(p))), so that
the action on the holomorphic 2-form dt A (dy/(—3x2(at® + b)) is the multiplication by (g
as expected. In particular the local action at p’ is of type (7,2). Similarly we can do the
computation on the open subset in the chart ¥y = 1 which contains the fixed point p, and
we can find again the same action (7,2). Observe that since o acts as the identity on the
fiber over t = oo, it fixes at least one component of this fiber (of the fiber Ig or I15). This
gives an example for the cases 2 and 6 in Table 2.3.

On other hand, the fibration ¢ admits also the automorphism 7(z, y, t) = (—x, —iy, (3t).
This automorphism acts also by multiplication by (g on the holomorphic 2-form wx, thus
7 is not a power of o (i.e they are not equivalent). Moreover the square of T preserves
each components of the fiber at t = co and fixes at least one of them, where the action at
infinity is:

(a/thy/t0,1/t) — (2/t", —y/1°, G /1).
By a similar computation as above one sees that the local action at the fixed points on
the fiber C' is of type (3,6), so we have an example for the cases 3 and 7 in Table 2.3
respectively.

Example 2.8.4. (Translation):

We give here an example for the cases (C',a, N') = (I,0,0) in Table 2.2 and (I3, 1,2) ,
(I16,2,2) in Table 2.3. Observe that in this three cases the non-symplectic automorphism
of order 8 on X acts as a translation of order two on the fiber C' (where the square of this
translation is the identity on C since it fixes the smooth elliptic curve C” in the first case
and has at least one fixed component in C" for the remaining two cases).

First, we give a short introduction of some basic facts in the geometry of elliptic curves,
then we construct the translation of order two that we need.
We take E an elliptic curve with a 2-torsion point corresponding to (x,y) = (0,0). Then
the equation of E has the Weierstrass form (see |17]):

v =z(z*+ax+b); a,beC. (1)
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Let the point at infinity O := (0:1:0) = (z : y : z) be the zero element for the group law
defined on the set of points of E. We denoted by P:=(0:0:1) = (z : y : z) the 2-torsion
point. In fact P + P = O see [21, Ch II, §1 (a]. So that the following map:

r . F — K
Q — Q9O+7P,

is a translation of order two on F (in fact 7'2(Q) = Q+ 2P = Q since P is a point of order
two). More precisely, by [21, Ch I, §4| the translation 7 is given as follows:

7 (2,y) = (/2 — a — 2,y /e.r(z)). (2)

If we replace z in the equation of E by *5* and y by y/27 and calling 2 again z, we get
a new equation in Wierstrass form for the elliptic curve F which is:

y? =12° + Az + B, (3)

where A = 9b — 3a® and B = 3a® — 9ab. It is a well known fact (see [21, Ch II]) that a K3
surface with a 2-torsion section has equation:

y? = x(a® + a(t)z + b(t),

where a(t) and b(t) are polynomials of degree 4 and 8 respectively. Or equivalently:
y* =2’ + A(t)z + B(t),

where

A(t) = 9b(t) — 3a(t)? and B(t) = 3a(t)2 — 9a(t)b(t).

Now the map:
T (2yt) = (1222 — alt) — @, y/a.r (@), 1), (4)

is an automorphism on X such that it acts as a translation of order two on the generic
fiber of 7 (here we denote 7(z) the first coordinate of 7(x,y,t)).
Consider now the non-symplectic automorphism of order eight on X:

o (xv yat) = (_‘Ta 13/7 Cgt)
This automorphism preserves the jacobian elliptic fibration 7 : X — P! defined as follows:
y* = 2(2” +a(t)z + b(t),

where a(t) = at*, b(t) = Bt ++; «a, 3,7 € C. More precisely, by doing the same transfor-
mation as in (3) we get that 7 is given equivalently by:

y? = a° + A(t)z + B(1),

such that A(t) = (98 — 3a?)t® + 9y and B(t) = (20> — 9ap)t'?2 — 9ayt*. The discriminant
of 7 is:
A(t) = K (Bt 4 7)?[(a® — 4B)t® — 44]; K € C is a constant.
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Consider now the translation 7 as follows:
T: ($7y7t) = (yz/‘T2 - O(t4 - ﬂj‘,y/l’T(I‘),t)

As we have seen, 7 is an automorphism of X and it acts as a translation of order two
on the generic fibers of m. Moreover, one can get easily that 7 o 0 = ¢ o 7, thus the K3
surface X has the order eight non-symplectic automorphism ¢ := {o o 7}. Observe that
the automorphisms ¢ and o act with order eight on P!, and they preserve the two fibers
over t = 0 and ¢t = co and act as an automorphism of order four on the smooth fiber over
t =0 given by f := zy? — 23 — 9yx22. Moreover, o acts as the identity on the fiber over
t = 0o, while ¢ acts as an order two translation on it (where the action of o at infinity is
(z/t4,y /15, 1/t) — (x/t4,y /15, (s1/t) and ¢ = (0 0 7)% = id).

Studying the zeros of the discriminant A(t), and looking in the classification of singular
fibers of elliptic fibrations on surfaces (e.g [17, §3]) we get the following:
-For generic «a, 8,7 the fibration 7 has 8 fibers of type Is and 8 fibers of type I; over the
zeros of A(t), o' acts as an order four automorphism on the fiber over 0 and it acts as an
order two translation on the fiber at oo (both fibers are smooth). This gives an example
for the first case in Table 2.2 (here we suppose that the fiber over ¢t = 0 is C' and the
fiber at infinity is C).
-If a? — 48 = 0 with (8 # 0), then A(t) = K(Bt® + v)?>(—48) ; K € C*. So that the
fibration acquires a fiber of type Ig over oo (in fact A(t) has a zero of order 8 over t = oo
and A(t), B(t) are non zero). The automorphism o acts as a translation of order two on
the fiber Ig, this means that o does not have any fixed point on Ig and o fixes at least
one component on it (since o acts as an order two translation on it). This corresponds to
the fourth case in Table 2.3.
-If B=0, (o #0), the discriminant A(t) = Kv?(a?t? — 47) vanishes at t = oo with order
16, and A(t), B(t) are nonzero at co. Thus we get a fiber of type I15. We are in the eighth
case of Table 2.3 (where o acts as an order two translation on the generic fiber).

Example 2.8.5. The case (r,l,m) = (6,0,0) , Pic(X) =U& Dy :

Consider the K3 surface X with elliptic fibration:
X:y? =23+ Alt)x + B(t),

where A(t) = at? + bt® and B(t) = ct® + dt” + ft'! with a,b,c,d, f € C. The fibration
7 : X —> P! carries the order eight automorphism:

o (x,y,t) — (iz, Gy, it).

Observe that the polynomial A(t) depends on 2 parameters and B(t) depends on 3 param-
eters, but we can apply the transformation (z,y) — (A2, A3y); A € C* to eliminate one
of the 5 parameters. Moreover the automorphisms of P! commuting with ¢ — it are of the
form ¢t — pt; p € C*. So we can eliminate a second parameter. This shows that the family
depends on 3 parameters and we write A(t) and B(t) as follows:

Aty =12 +0t° | B(t) = ct® + dt” + 1L,

On other hand, the fibration 7 has a fiber Ifj over t = 0 and a fiber IT (see [17, §3] ). As
we have seen in Example 2.8.3 the holomorphic two-form is given by wx = (dt A dx)/2y,
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so that the action of ¢ on it is a multiplication by (g. This is a three dimensional family,
so we have rkTx = 4m; = 16 and in fact the family of K3 surfaces in Table 2.4 with
(r,l,m) = (6,0,0) depends on 3 parameters. So this is in fact the whole family. Hence
for the generic choice of the parameters b, ¢, d the action is trivial on Pic(X). The curve C
intersects in three points the fiber Ijj (at the three multiplicity one components of Ijj) and
meets the fiber II with multiplicity 3 at the singular point.

Observe that the fiber Ijj contains the smooth rational fixed curve by ¢ and four fixed
points with local action P?7 (see Remark 2.1.11 where o preserves each smooth rational
curve of X since Pic(X) = S(o) ). On other hand the invariant elliptic cuspidal curve over
t = oo contains two fixed points of type P35, P27 respectively.

Example 2.8.6. The case (r,l,m) = (14,0,0) , Pic(X) = U@ D, ® Eg :

Consider the elliptic fibration 7 : X ~ P! as in Example 2.8.5 with b = f = 0, this
is given by:
y? =23 + at’x + (ct® 4 dt"),

The fibration carries the automorphism of order eight:
o (x,y,t) — (iz, Gy, it).

The discriminant of 7 is:
A = t%[4a® + 27(c + dt*)?].

So by (e.g [17], §3) the fibration has a fiber of type Ij over t = 0, and over t = oo
it has a fiber of type II*. Observe that the action of ¢ on the holomorphic two-form
wx = (dt A dx)/2y is the multiplicity by (g. This is a three dimensional family, so for the
generic choice of the parameters of 7 the action of ¢ is trivial on Pic(X). Hence o preserves
each component of Ijj , II"* and fixes respectively the component of multiplicity 2 and the
component of multiplicity 6. On other hand, the curve C of genus ¢g(C') = 3 meets Ij at
three multiplicity one components and it cuts the fiber IT* in the isolated component of
multiplicity 3 (since C intersects each fiber of 7 at three points (see Proposition 2.2.1)).
Finally, by using Remark 2.1.11 one can find simply the local action at the 12 isolated
points in Fix(o).

Example 2.8.7. The case m =0 , Pic(X) = U@ DJ?:

Consider the K3 surface X with elliptic fibration:
X2 =22+ A(t)x + B(t),

where A(t) = at® + bt? | B(t) = ct” +dt® ; a,b,c,d € C with the non-symplectic order
8 automorphism o(xz,y,t) = (—iz,(sy, —it). Observe that o acts as an order four auto-
morphism on the basis of the fibration 7 : X — P! and the two preserved fibers are over
t=0and t = oo.

The discriminant polynomial of « is:

A(t) = 4A(t)% 4 27B(t)? = t5[4(at* + b)® + 27(ct* + d)?].

By studying the zeros of A(t) and looking in the classification of singular fibers of elliptic
fibrations on surfaces (e.g [17, §3] ) one gets that: for a generic choice of the coefficients
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the fibration has two singular fibers G, G of type Ij over t = 0 and ¢ = oo respectively
and it has 12 fibers of type I.

On the other hand, the number of moduli can be computed as follows: one can act
on the equation by the transformation (z,y) — (\2z, A3y) (and divide by A%) and by an
automorphism of P! given by a diagonal matrix. So one gets that the number of moduli
is 4 —1—1 = 2. So that generically rkTx = 12 and rkPic(X) = 10. Moreover by
Shioda-Tate formula (rk Pic(X) = 2+ rk MW + > .4, (#components of F — 1)) we get
rk MW = 0, hence we can not have section of infinite order. This corresponds to the
eighth case of Table 2.4. Observe that the curve C' of genus 4 meets the two fibers
G,G' in three multiplicity one components and the last multiplicity one component of I3
intersects the unique section F of 7. Finally by studying carefully the action, one sees
that the automorphism o preserves each component of one of the two Ij fibers G, G’ and
exchanges two components in the other one (this corresponds to [ = 1). It leaves invariant
the component of multiplicity two and contains two fixed points on it of type P?.

Using Remark 2.1.11 it is easy to find the local action at the 8 fixed points.

Example 2.8.8. Consider the elliptic fibration 7 : X — P! in Weierstrass form given
by:
y* =2’ + A1) + B(t),

where A(t) = a2t2 + a6t6 and B(t) = bgtg + b7t7 + blltll with as, ag, b3, b7,b11 € C. This
fibration carries a non-symplectic order eight automorphism o:

(.T,y,t) — (—il‘, C&% _Zt)

The automorphism o acts on the base of 7 as an automorphism of order four with two
fixed points corresponds to o—preserved fibers.

The discriminant polynomial of 7 is:
A(t) = 4A(t)> + 27B()* = g1t° + got' + gst'* + gut'® + gst*.

Such that:
g1 = 4a§’ + 27b§ , g2 = 12ag + b7bs.

g3 = 12a3 + 27b2 + 54by1bs.
g1 = 4ad + 54by by | g5 = 27b3,.

Observe (e.g by [17, §3]) that for a generic choice of the coefficients of A(¢) and B(t) the
fibration 7 has one fiber of type Ij over ¢t = 0 and one fiber of type IT over t = oo (this
case has already appeared in Example 2.8.5).

On the other hand, if g; = 0 then the fibration 7 has a fiber of type I} over £ = 0 and a
fiber of type I over t = oo and it has 12 fibers of type I;. By doing the same argument as in
the previous example on gets that rkTx = 12 (i.e m; = 3) and rk Pic(X) = 10. Moreover,
by Shioda-Tate formula we get rk MW = 0 since the fibration has one reducible fiber of
type I} and the rank of Pic(X) is 10, this means that the fibration has a unique zero-section
E. This section F is fixed by % and invariant with two isolated fixed points by ¢ and
o2. Hence observe that Fix(c?) contains exactly 4 smooth rational curves, thus by [9, §4]
see also ([4], Figure 1) the involution o* fixes a smooth curve C of genus g(C) = 5. More
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precisely, the curve C' meets with multiplicity three the fiber IT at the singular point and
the fiber I} in three multiplicity one components, while the last component of multiplicity
one of the I} fiber intersects the unique section E of 7. Finally by studying carefully the
action of o on the fibration 7, one gets that the automorphism o exchanges two components
of I} of multiplicity one that intersect C' and o leaves invariant the other components (so
that we have | = 1 ). Using Remark 2.1.11 one obtains that (ng,ns,n4) = (4,2,2) such
that (k,h,N') = (1,1,2) in this case. So we have an example for the seventh case of
Table 2.4.

If g1 = g5 = 0 then by a generic choice of the coefficients the fibration admits a fiber
of type I} respectively of type I} over t = 0 respectively ¢ = oo, and it has 8 fibers of
type Iy over the other zeros of A(t). In this case we have that the number of moduli is
1, so that generically rkTx = 8 and rk Pic(X) = 14 . Moreover, it follows by Shioda-Tate
formula that rk M.W = 0 since rk Pic(X) = 14 and the fibration has two reducible fibers
one of them of type Ij and the other of I} type, so that the fibration 7 has a unique
zero-section E. On the other hand, observe that the involution ¢? fixes exactly 5 smooth
rational curves, thus by ([9], §4), see also [4, Figure 1], it fixes also a smooth curve of genus
g(C) = 2. The curve C meets the two fibers of type I} and I in three multiplicity one
components and the last multiplicity one component intersects the zero section E. Finally
by studying the action of o on the fibration we get that the automorphism o exchanges
two components of multiplicity one in the fiber I} respectively I that intersect C and o
leaves invariant the other components of each of this two fibers. Using Remark 2.1.11 one
finds that (ng,n3,n4) = (3,3,4) and (k,h, N') = ((1,2,2). So we get an example for the
last case in Table 2.4.

Finally, it g1 = g4 = g5 = 0 then the fibration 7 has a fiber I} over t = 0 and a fiber
IT* over t = oco. By the same argument one can get that rk Pic(X) = 18 and = has
a unique zero section F fixed by o, moreover we get the involution o? fixes a smooth
elliptic curve C (in fact Fix(c?) contains 8 smooth rational curves and rk Pic(X) = 18 so
by ([9], §4) we have g(C) = 1). On the other hand, the elliptic curve C intersects the
component of multiplicity three of the fiber /1" and meets fiber I in three multiplicity
one components, while the zero section E intersects a component of multiplicity one in
each one of this two fibers. By studying carefully the action of ¢ on the fibration 7 one
sees that the automorphism o preserves each component of the IT* fiber. On the other
hand, o exchanges two components that intersect C' in the fiber of type I} and o leaves
invariant the other components (this gives that [ = 1 where we do not have a section
of infinite order). By applying the Remark 2.1.11 we get (ng,ns,n4) = (6,4,4) so that
(k,h,N') = ((1,2,2) in this case. This is the sixth case in Table 2.3.

Example 2.8.9. (Involution on the base of the fibration):
Consider the elliptic fibration X given as:

y* = x(a® + tps(t))

with pg(t) := (aet® + aqt* + ast® + ag) = (2 — a1)(t? — a2)(t? — a3), and the order 8 non
symplectic automorphism acting on it:

o (I‘,y,t) = (_ixvg8y7 _t)

The discriminant is A(t) = 27t3(t? — a1)3(t? — a2)(t? — a3)3. For generic choice of the
coefficients the fibration has 8 fibers I11 (two tangent rational curves). This shows that
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rk Pic(X) > 10. In fact by Shioda-Tate formula we have:

rk Pic(X) =2 +rk MW + Z (#components of F'— 1),
F'fiber

so we get rk Pic(X) > 2 + rk MW + 8 where the fibration has at least a zero section.

Observe that the fibration has a two torsion sections given by t — (0:0:1) = (z: y : 2)
(while the zero sectionist¢ +— (0:1:0) = (z : y : 2)). Denote by 7 the symplectic involution
associated to this 2-torsion section. On the other hand, by [17, ch. I, §2] the J invariant
of this elliptic fibration is J = 4A(¢)3/(4A(t)? + 27B(t)?) = 1 (where B(t) = 0). This tells
us that beside the fiber of type III (and the smooth fibers) the possible degenerations of
the previous fibration (see [17, §3|) may produce singular fibers of type I and II1T*. We
will see this below.

The square of the automorphism o, that is o2 : (x,y,t) + (—x,4y,t), preserves each

fiber and each fiber has an automorphism of order four. Moreover, o2 fixes two points on
the generic smooth fiber, these two fixed points are contained in the 2-torsion section sg
and in the zero section sg. This gives that k 2 > 2.
The curve that cuts each fiber in y = 0 and 22 +tpg(t) = 0 has a 2 : 1 morphism to P! and
has ramification points where tpg(t) = 0, these correspond to the eight singular fibers 11
(over the seven zeros of tpg(t) = 0 and one over infinity) and in fact C' meets these fibers in
their tangent point. The sections sg and s9 meet one of the two components of 111 (not the
same). We can find easily the genus of the curve C' C Fix(o#) by using Riemann-Hurwitz
formula 2¢g(C) — 2 = —4 + 8 so that g(C') = 3. In fact recall that the Riemann-Hurwitz
formula applied to a 2:1 morphism from a curve C to the projective line P! is given by:

29(C) —2=2(0-2) + 3 (e, — 1),

peC

where e, is the ramification index at a ramification point p which in this case is e, = 2.
Observe moreover that the curve C' contains two fixed points for the action of o thus
N’ = 2, and since o preserves the two sections sg and so and has two fixed points on it
then N = 6. Looking at [2, Example 8.2] we see that in this case Pic(X) = U(2) ® D}?, so
we are in case 9 in Table 2.4. Observe that moreover the family of such elliptic fibrations
is 2-dimensional, so this is the whole family (since m; = 3). If we compose o with 7 the
two sections are exchanged so that C still contains two isolated fixed points, hence N/ = 2
and also N = 2. This is case 10 in Table 2.4.

We start now to consider degenerations of the previous family. Remark that in the following
cases the situation is as before for the action of o and ¢ o 7 on the generic fiber.

e a1 = ay (and similar cases):
If a1 = o, then the discriminant of the fibration is given by:

A(t) = 2783 (12 — o) % (? — a3)®.

This gives two fibers Ijj exchanged by o and 4 fibers of type 111, two of them over 0
and oo (observe that we can not get the two fibers I on 0 and oo), thus by Shioda-
Tate formula we have rk Pic(X) > 14. On the other hand, the genus of the curve
C in this case is 2¢(C') — 2 = —4 + 4 (by using Riemann-Hurwitz formula) so that
g(C) = 1. Remark that the situation is as before for the action of o and ¢ o 7 on
C'. Hence either (N, N’) equals (6,2) or (2,2) and so we get the cases 3 and 4 in
Table 2.3.
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e a1 =0 (and similar cases):

In this case the fibration has a fiber I11* : R1+2Ro+3R3+4R4+2R5+3Re+2R7+ Rs
over t = 0 and a fiber of type I1I over co and four more fibers of type 111 over the
other zeros of A(t). Here g(C') = 2 and rk Pic(X) > 14 (by doing the same previous
argument). Moreover, observe that the curve C' meets the I11* fiber in R and the
sections sg, so meets this fiber in one of the two components Ry, Rg (not the same).
So that N’ = 2 for the automorphism o and by looking at the possible action at the
intersection points of the components of the I17* fiber we get that N = 10. On the
other hand, for o o 7 the curve C still contains two fixed points thus N’ = 2 while
N =4 in this case. We get examples for the cases 15 and 16 of Table 2.4.

e a1 = ap = 0 (and similar cases): Here we have a fiber I11* over zero and over oo,
and two fibers I11 over the other zeros of A(t). We have g(C) = 1. We get here
examples for the cases 6 and 7 of Table 2.3.

e a1 =0 and as = a3 (and similar cases): Here we have a fiber of type II1T* over zero
and a fiber 111 over oo and we have two fibers I exchanged by o. Here we have
29(C)—2 = —4+2 = —2 50 that g(C) = 0 (i.e the all fixed curves by o* are rational)
and then the curve C contains two fixed points (one of them of type P>7 and the
other of type P36). Hence for o we find k = 1 and N = 10, this is the only case
in Theorem 2.6.1. For 0 o7 we find k =0 and N = 4 with (n4,n2,n3) = (2,1, 1).
We have moreover that k,2 = 3 and N,2 = 10 this is the last case in Table 2.8.

Example 2.8.10. Double cover of the quadric:
Consider the following automorphism of P! x P!:

J ((wo, 1), (o, y1)) = ((wo,iz1), (Yo, 7y1))
The double cover of P! x P! ramified along a curve of bidegree (4,4) is a K3 surface. Take

the equation of the curve f(zg,z1,x2,x3) such that j(f) = if so that the double cover

w? = f is invariant by the automorphism:

o: ((.’E(], xl)v (y()? yl)? UJ) = ((IL'(), ixl)v <y07 iyl)? CgU))
The equation of f is:
Yoy (a0 + ar) + xga1 (boyg + biyt) + 2ot yoyi (cor1yo + crzoyr)

with some parameters ag, a1, bg, b1, co,c1 € C. Observe that by applying transformations
of P! x P! we see that the family depends in fact on 3 parameters (6 — 1 — 2 = 3). The
double cover is a K3 surface and the fixed locus of o# is a curve of genus 6. There is a Dy
singularity in ((0:1),(0:1),0). In fact consider the embedding in P? by Segre:

((xo 1), (Yo : y1)) = (Toyo : Toy1 : T1yo : x1y1) = (T 1y : 2 : t)

The image is the quadric #t = yz and the singular point of the image of C' = {f = 0} is
(0:0:0:1). The image of C on xt = yz is:

aol‘gy + 012375 + box3z + b1y3t + coyt22 + cl;gth =0.
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In the chart ¢ = 1 the equation of the quadric becomes x = yz and the equation of C is
hence:
3 3 3 3 2 _
aox’y + a1z° + box°z + bry° + coyz® + cixzy = 0.

Choosing local coordinates (y, z) on the quadric (the partial derivative with respect to z
is equal to one, so one can use implicit function theorem). We get an equation:

a2 + boyP 2t + a123 + by + coy? + a1y?z = 0.

Using the classification of [22, Ch. 2 §8| one obtains that the singularity is a Dy singularity.
Observe that in the charts z = 1, y = 1, z = 1 there are no singularities (one can do the
computation by hand or use the computer algebra system MAGMA).

By computing the number of moduli one gets that m; = 4 thus rk Pic(X) = 6. So that the
Picard group of the double cover is U(2) & Dy4. We have four fixed points on the singular
curve C: the singular point ((0:1),(0: 1)) and the three smooth points ((0: 1), (1 : 0)),
((1:0),(0:1)), ((L:0)(1:0)) this tells us immediately that the number of fixed points
on the smooth curve corresponding to C' on the desingularization X of the double cover
contains at least 3 isolated fixed points. This is the case 4 in Table 2.4.

Example 2.8.11. Quadruple Quartics:
Take the fourfold cover of P?:

t* = 2o(l3(z1, 22) + 2Gl1 (21, T2))

where I3(x1, x2) is homogeneous of degree three and [y (z1, z2) is homogeneous of degree 1.
This is invariant for the action of the order 8 non symplectic automorphism:

(t, 20,21, x2) — (Cst, —T0, 1, T2)

it fixes the inverse image of the curve {z¢ = 0} which is rational and 4 points on the curve
C : {l3(z1,72) + 2311 (z1,v2) = 0} which is in fact elliptic. This gives another example for
the case 4 of Table 2.2.



Chapter 3

Non-symplectic automorphism of
order 16

In this chapter we classify K3 surfaces with non-symplectic automorphism of order 16 in
full generality. We obtain a complete classification for the non-symplectic automorphisms
of order 16 based on the classification of non-symplectic automorpfisms of order 4 on
K3 surfaces given by [2]|, without the use of our results contained in Ch 2, following the
submitted paper [1].

3.1 The fixed locus.

Let X be a K3 surface and o a non-symplectic automorphism of order 16 acting on it,
this means that the action of o* on the vector space H?>%(X) = Cwy of holomorphic
two-forms is not trivial. More precisely we assume that the automorphism o is (purely)
non-symplectic, i.e. o*wx = (1ewx, where (16 is a primitive 16th root of unity. For
simplicity we omit sometimes "purely”.

We denote furthermore by r,i,15,mMi, m}fj, mgj for j = 1,2,4,8 the rank of the
eigenspaces of (07)* in H?(X,C) relative to the eigenvalues 1,1, i, (% and (6. For

simplicity for j = 1 we just write r,, l,,... or even r,[,. ...
Remark 3.1.1. e Doing a simple computation we get the following relations:
T2 =To + g, ly2 = 2my, my2 = 2m}, mclr2 = 2m2,
ot =7Tg + s + 2mg, lya = 4ml, mga = 4m2,
Tos =Ty + ly + 2my + 4ml lys = 8m2,

To + 1y + 2my + 4ml + 8m2 = 22.

o As a direct consequence of the previous relations one can get immediately that the
invariants l,2, mg2, m}’z € 27 while the invariants l,a, mg e € 4Z.

We recall the invariant lattice
S(o?) = {z € H*(X,Z)|(¢7)*(z) = x},

and its orthogonal ' '
T(07) = S(c)) N H*(X,7Z),

o7
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clearly we have that rk S(07) = r,;.

By |8, Theorem 3.1| the eigenvalues of the action of o on T’x are primitive 16th roots
of unity so rk(Tx) = 8m2 (see §1.2.2, Proposition 1.2.13). Since 0 < rk(Tx) < 21 we have
in fact only two possibilities which are m2 = 1 or 2 so that rk Pic(X) = 14 respectively 6.
As we have remarked in §1.2.2 in the generic case this is also the rank of S(c®) = Pic(X)
and we have by orthogonality Ty = T(c®). Recall moreover that 7, > 0, see Proposition
1.2.11, § 1.2.2. We start recalling the classifiction theorem for non-symplectic involution
on K3 surfaces (see Theorem 1.2.17 in Ch 1, [9, Theorem 4.2.2| and also [11, §4]).

Theorem 3.1.2. Let 7 be a non-symplectic involution on a K3 surface X. The fized locus
of T is either empty, the disjoint union of two elliptic curves or the disjoint union of a
smooth curve of genus g > 0 and k smooth rational curves.

Moreover, its fized lattice S(7) C Pic(X) is a 2-elementary lattice with determinant 2%
such that:

o S(1) = U(2) ® Es(2) iff the fized locus of T is empty;

o S(1)=U @ Eg(2) iff T fizes two elliptic curves;

o 2g =22 —1kS(7) —a and 2k =tk S(7) — a otherwise.

At a fixed point for ¢/ the action can be linearized (see § 1.2.2 and e.g. [8, §5]) and is

given by a matrix
. ct o 0
Al — (16/4)
t,s 0 CS .
(16/7)

with t4+s =1 mod (16/5), 0 <t < s < 16/5. This means that the fixed locus of ¢/ is the
disjoint union of smooth curves and isolated points (see |9, Section 4, §2| and [8, §5]). In
the sequel of this chapter when we consider curves in the fixed locus of some 07 we always
mean smooth curves. By Hodge index theorem Fix(¢/) may contains only one curve of
genus g > 1. We denote by k,; the number of fixed rational curves, by N,; the number of
fixed points in Fix(o7). Moreover by nf * we denote the number of isolated fixed points of
type Pb* by o7. In several cases when it is clear which automorphism we are considering
we just write k, N, ns s, and so on.

Lemma 3.1.3. Let o be a non-symplectic automorphism of order 16 acting on a K3 surface
X and let aya be the number of rational curves interchanged by o* and fized by o8, then
age € 47.

Proof. A curve as in the statement has stabilizer group in (o) of order 2. Hence its o-orbit
has length 8, so we get that ay4 is a multiple of 4. O

We denote by 2a the number of exchanged smooth rational curves by ¢ and fixed by
02, and by 85 the number of smooth rational curves cyclic permuted by ¢ and fixed by o®
(clearly they are permuted by o2, four by four, and they are interchanged by o two by two).

We formulate now Proposition 3.1.4 that we need to prove Theorem 3.1.8. We show
then in Proposition 3.2.3 that the case g(C') = 1 is not possible.

Proposition 3.1.4. Let o be a non-symplectic automorphism of order 16 acting on a K3
surface X with S(0®) = Pic(X). If C C Fix(o) then g(C) = 0,1, and we can not have two
curves of genus one in the fized locus.
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Proof. If C' C Fix(o) then this is also fixed by ¢* which is non-symplectic of order 4. If
g(C) > 2 by the relations (3.1.1) we have that {,4 and m,4 are multiples of 4, checking in
[2, Theorem 4.1] the only possible case is (mgy4,7454,1l54) = (4,6,8) and Nya = 2, ke = 0,
g(C) = 2. By the classification of Nikulin (see [11, §4]) the involution o® fixes five rational
curves other than the curve of genus 2. Since k s = 0, four of the rational curves are
interchanged two by two by o, one rational curve is preserved and contains the two fixed
points. In this case a,4 = 2 contradicting Lemma 3.1.3. If ¢(C) = 1 and there exists
another genus one curve C’ C Fix(o), then by Theorem 3.1.2 rk S(0®) = 10 but this is not
possible, since the rank can be only equal to 6 or 14 as we have explained above. O

Remark 3.1.5. More in general by the same reason as in Proposition 8.1.4 if Fix(c®)
contains an elliptic curve then this is the only one. We exclude also the case of Fix(a®) = ()
(here again is 1k S(0®) = 10 and this is not possible). The fact that Fix(c7) # 0, j =1,2,4
follows 1mmediately from the holomorphic Lefschetz formula, indeed the Lefschetz number
is not zero (see Proposition 3.1.8, Proposition 3.1.11 and [2, Proposition 1]).

We recall now Lemma 1.2.15 and the following useful remark which is a direct appli-
cation of the Remark 1.2.16 when the order of a non-symplectic automorphism is n = 16
(see also e.g. |2, Lemma 4]):

Lemma 3.1.6. Let T' = ), Ry be a tree of smooth rational curves on a K3 surface X
such that each Ry is tnvariant under the action of a non-symplectic automorphism n of
order j. Then, the points of intersection of the rational curves Ry are fized by n and the
action at one fived point determines the action on the whole tree.

Remark 3.1.7. In the case of an automorphism of order 16, with the assumption of Lemma
1.2.15, the local actions at the intersection points of the curves R; appear in the following
order (we give only the exponents of  in the matriz of the local action):

...,(0,1),(15,2), (14,3), (13,4), (12,5), (11,6), (10,7), (9, 8),
(8,9), (7,10), (6,11), (5,12), (4, 13), (3, 14), (2,15), (1,0), . ..

This remark will be particularly useful when we study elliptic fibrations on X.

Proposition 3.1.8. Let o be a non-symplectic automorphism of order 16 acting on a K3
surface X. Then the fixed locus is non-empty and

Fix(c) =CUE U ---UE,U{p1,-- ,pn}

or
Fix(o) = By U---UE,U{p1, - ,pn},

where C' is a curve of genus g = 1, the E;’s are rational fized curves, k = k, and the p;’s
are isolated fized points, N = N,. Moreover N is even, 4 < N < 16 and the following
relations hold :

N =mn314 +n413 +n512 +ne 11 + 2n710 + 2k + 1. (I)

N = 2n3714 + 2715,12 + 2n7710 + 2k. (H)
N=2+r,—1l, — 2k (I11)
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Proof. By Proposition 3.1.4 we know that the fixed locus may contain at most one curve
of genus one. We use first the topological Lefschetz fixed point formula for o. We write
r=r, and [ = [,. We have

N+ 3 kerino) (2 — 20(K)) = x(Fix(0)) = Yp_o(—1)" tr(o* [ H"(X,R))
=2+ tr(o*|H3(X,R)).

This gives N + 2k = x(Fix(0)) =r — 1+ 2 so that r — [ = N + 2k — 2 (this gives (III)).
Since rk S(0) = 14 or 6 in any case we have N < 16. We use now holomorphic Lefschetz
formula (see |24, Theorem 4.6]). The Lefschetz number is

2
Lo) =Y (=) tr(o"[H"(X,0x)) = 1 + (15,
h=0

on the other hand
Nt s 1+ 6
L = : 1—g(K
() ; dot(I — o*|Ty) (1= )2 2. (-g®)

KCFix(o)

where T, denotes the tangent space at an isolated fixed point x. Using the expression for
the local action of o at x and comparing the two expressions for L(o) we get the equations:

n21s5 — nrio0 +ns9 = 1+ 2k. (3.1.1)

12,15 — N3,14 + N4,13 — N5,12 + N6, 11 — N7,10 T 18,9 = 2k. (3.1.2)
n413 + n512 — 21611 + 217,10 — ng9 = 2k. (3.1.3)
21314 — 214,13 + 216,11 — g9 = 2k. (3.1.4)

Combining (3.1.1) and (3.1.2) we get
ng 14 — N413 + N512 — ne,11 = 1. (3.1.5)

From (3.1.1) and (3.1.2) and the fact that N = ) n; s we obtain the relations (I) and
(IT) in the statement respectively. By (I) we get that N > 1 and by (IT) we find that N is
an even number, thus N > 2. If N = 2 then by (I) we obtain k = n719 = 0 and either ns3 14
or ns 12 is equal to 1 by relations (I) and (II) , thus n4,13 = ne 11 = 0 by (I) and either ng 15
or ngg is equal to one by (3.1.1). By (3.1.4) we obtain ngg9 = 2n3 14 s0 ngg = nz 14 = 0.
By using (3.1.3) we obtain n5 12 = 0 which is impossible. So N > 4. O

Remark 3.1.9. As a direct consequence of formulas in Proposition 3.1.8 we find :

— If N =4 we have only the possibility with (n314,n7,10,n89,k) = (1,1,2,0) (the
other ny s are zero) so that r —1 = 2.

— The case (N, k) = (8,0) is not possible.

— If (N,k) = (6,0) then (ns12,n6,11,77,10,789) = (2,1,1,2), the other nys are
zero and r — 1 = 4.

— If (N, k) = (6,1) then (n2,15,n3,14,n7,10) = (4,1,1), the other ny s are zero and
r—1=6.
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The fized points for o with local action (2,15), (7,10), (3,14), (6,11), are isolated
fized points for o, whence the points of type P>, PY13 and P>'2 are contained in
a fized curve for o*. The points of type P®° are contained in a fized curve for o2.

Proposition 3.1.10. Let o be a purely non-symplectic automorphism of order 16 acting
on a K3 surface X. The fived locus Fix(c*) contains at least one fized curve C of genus 0
or 1 (and no curves of higher genus).

Proof. If Fix(c0*) contains only isolated fixed points then by Remark 3.1.9 we have n4 13 =
ns,12 = ngg = k = 0. By equation (3.1.4) we obtain n3 14+n6,11 = 0 so they are both equal
to 0. We get a contradiction to equation (3.1.5). Finally if the order four automorphism
o? fixes a curve C of genus g(C) > 1 and since by Remark 3.1.1 we have l,4,m,4 € 47, we
get (mya,rpa,l54) = (4,6,8) by [2, Theorem 4.1]. In this case a,4+ = 2 which contradicts
Lemma 3.1.3. O

In the following proposition and remark we recall the relations for the number of fixed
points and curves by a non-symplectic automorphism of order eight o2, and the local
action of 02 at the intersection points of tree of smooth rational curves that appearing in
Proposition 2.1.8 respectively Remark 2.1.11. We give also some other results.

Proposition 3.1.11. Let o be a non-symplectic automorphism of order 16 on a K3 surface
X and C C Fix(0?). Then g(C) < 1 and the following relations for the number of fized
points and curves by o hold:

na2,7 + N36 = 2+ 4k,e,
ngs+no7—nze = 24 2k,2,
NO.Z = 24+ Ty2 — ZUZ — 2]{202,

where ny s denote the number of fized points of type (t,s) for the action of a2

Proof. Observe that by Proposition 3.1.10 we have g(C') < 1 moreover an isolated fixed

t

point for o2 is given by the local action % 505 >, t+s=1 mod (8),0 <t < k<8 We
obtain the relations in the statement by applying holomorphic and topological Lefschetz’s
formulas (see Proposition 2.1.8). O

Remark 3.1.12. o By Lemma 1.2.15, and with the same notation there, the local
action of 02 at the intersection points of the curves Ry, appear in the following order:

(0,1),(7,2),(6,3),(5,4),(4,5),(3,6),(2,7),(1,0),...

o The o-fized points of type P>'2 and P43 give o2-fized points of type P*°, the o-fized
points of type P2,15 and P™'0 give o®-fized points of type P*7 (up to the order).
The o-fized points of type P>1* and PS5 give o2-fized points of type P>5 (up to the
order).
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3.2 The case of an invariant elliptic curve.

Here we suppose that the involution ¢® fixes an elliptic curve C. Thus, as we have seen
in Section 2.3, the K3 surface X carries an elliptic fibration ¢ : X — P! having C as a
smooth fiber. The fibration 7¢ is invariant by ¢* ; i = 1,2, 4,8 (since o’ preserves C which
is a fiber of m¢ ) and all curves fixed by o' are contained in the fibers of 7, that because
they are disjoint with C' and the action on the base of ¢ is non-trivial. In fact if the action
would be trivial then a smooth fiber would have an automorphism of order 8. An elliptic
curve can admit only automorphisms of order 2,4,6 (different from a translation), so that
this automorphism should be induced by a translation by a point of order 8 on the generic
fiber. But then o would be a symplectic automorphism, which contradicts our assumption
on o.

Lemma 3.2.1. If X carries a o—invariant elliptic fibration, such that o® fizes an ir-
reducible smooth fiber C of this fibration, then o acts with order 16 on the basis of the
fibration and fizes two points on it.

Proof. The proof is given as the same way as in Lemma 2.3.1 of Section 2.3. O

We recall first some notations. We denote by k,; the number of fixed rational curves,
by N,; for j =1,2,4,8 the number of fixed points in Fix(c7), and by 2a,4+ the number of
exchanged smooth rational curves by ¢ and fixed by o8.

Theorem 3.2.2. Let o be a purely non-symplectic automorphism of order 16 on a K3
surface X with Pic(X) = S(0®) and C be an elliptic curve in Fiz(c®). Then o acts as an
automorphism of order four on C and we have the following cases

m? m! m l r N k type of C’
1 1 0 1 9 8 1 v
0 3 7 6 0 v

Table 3.1: The case g(C)=1

Proof. Since o preserves C, then there is a o—invariant elliptic fibration 7¢ : X — P!
with a generic fiber C'. Observe that by Lemma 3.2.1 the automorphism o has order sixteen
on the basis of 7¢ and it has two fixed points on P!, corresponding to the fiber C' and a
fiber C" of mc. This implies that all rational curves fixed by o are contained in c'.

At first observe that the elliptic curve C ¢ Fix(c). In fact if C' C Fix(o) then the

fibration mo admits also an automorphism of order four o, since by Remark 3.1.1 we have

lga,mga € 4Z, by |2, Theorem 3.1] we get (mga,754,0,4) = (4,10,4) and the fixed locus
of 0% contains 1 rational fixed curve and 6 isolated fixed points (here a,s = 0), we get
moreover that the fiber C is of type IV* in this case.

The component of multiplicity 3 in the fiber IV™* is clearly o-invariant. If it is fixed by
o then each other component is preserved, so that £k = 1 and N = 6. More precisely by
Remark 3.1.7 we have ng 15 = n314 = 3 which contradicts Remark 3.1.9. If the component
of multiplicity 3 is o-invariant then it contains 2 isolated fixed points. Two branches of
the fiber are exchanged and we have N = 4. By Remark 3.1.9 we have ng g = 2, n710 = 1,
n3,14 = 1 but this is not possible by using the Remark 3.1.7.
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Assume now that the curve C C Fix(c?). As we have seen previously that o fixes two
points on the basis of ¢ corresponding to the elliptic curve C' and a singular fiber C’ of
type IV*, and we are in the case (mga,754,1l54) = (4,10,4) with (ky4, Nya,a,4) = (1,6,0)
by [2, Theorem 3.1]. Clearly o leaves invariant the fiber C' and the singular fiber C’ of
type IV*. The latter corresponds to the other fixed point for the action of ¢ on the base
P'. By the previous remark the curve C can not be fixed by o, hence ¢ has order 2 or
4, with fixed points, on it or it is a translation. By basic results on automorphisms on
elliptic curves, in the first two cases o fixes four, respectively two points on C. There are
two possible actions on C’.

First case: The singular fiber of type IV* contains a fixed rational curve, which is
necessarily the component of multiplicity 3. Then by using the Lemma 3.1.6 and the
formulas in Proposition 3.1.8 we find k = 1, N = 8 with no 15 = n3 14 = 3 and ny 13 = 2
the other n; , are zero. In particular o must have two fixed points on C' this means that it
acts as an automorphism of order four.

Second case: The singular fiber of type IV* has a reflection of order 2. Then the
curve of multiplicity 3 is preserved and contains two isolated fixed points with action
(8,9). In fact this curve must be fixed by o2 otherwise it would contain too many isolated
fixed points for the action of o2. Combining Remark 3.1.9 and Proposition 3.1.8 we find
(N, k) = (6,0), with ng g = 2 = ns5,12, n7,10 = 1 = ng,11, the other n; ¢ are zero. We observe
that also in this case ¢ must have two fixed points on C, this means that it acts as an
automorphism of order four.

Using the fact that (mga,744,054) = (4,10,4) we get immediately that in both cases

m2 = m}, = 1. Moreover we have that r, + [, + 2m, = 10 and in the first case we have

r — [ = 8, in the second case r — [ = 4. In both cases we have N 2 = 10 and k,2 = 1 so
using Proposition 3.1.11 we obtain the values of r, [, m given in the table. In this two cases
we have that rk Pic(X) =1k S(0®) = 14.

Finally, assume that C ¢ Fix(c?). By the equations of Remark 3.1.1 and since k,1 > 0
by Proposition 3.1.10, we are in the case (mgy4,7,4,054) = (4,10,4) with (kya, Nya, aza) =
(1,6,0) in [2, Theorem 8.4]. The order 4 automorphism o acts on the curve C as a
translation and the six fixed points by it are contained in the reducible fiber C" of type
IV*. This case is not possible by the same reason of the first case in this proof (where o
acts on the curve C' as a translation with no fixed points on it). O

Proposition 3.2.3. Let o be a purely non-symplectic automorphism of order 16 acting on
a K3 surface X. If C C Fix(o) then C is rational.

Proof. By Proposition 3.1.4 we have that if ¢ fixes a curve C, then C is either smooth
elliptic curve or rational. The case when g(C) = 1 is not possible by Theorem 3.2.2 (see
the first case in the proof of the previous theorem). O

3.3 The rank six case.

In this section we study the case when Pic(X) = S(0®) has rank 6. We denote here by N’
the number of fixed points that are contained in the curve C' C Fix(o®), by 2h the number
of interchanged points by ¢ on it. Observe that the fixed points by ¢ on C are of type
P10 p215 p3ld and PSIL In fact by Proposition 3.1.10 we get if C is fixed by the order
four automorphism o then g(C) = 0,1, and by Theorem 3.2.2 the rank of Pic(X) is 14
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when ¢g(C') = 1. We denote also by k,; the number of fixed rational curves, by N,; for
j =1,2,4,8 the number of fixed points in Fix(c7), and by 2a,4+ the number of exchanged
smooth rational curves by ¢* and fixed by 8.

The following proposition will be useful in the proof of Theorem 3.3.2.

Proposition 3.3.1. Let o be a non-symplectic automorphism of order 16 on a K3 surface
X such that Pic(X) = S(0®) = U @ L where L is isomorphic to a direct sum of root
lattices of types Ay, Dyyn, E7 or Eg and o® fizes a curve of genus g > 1. Then X carries a
jacobian elliptic fibration m: X — P! whose fibers are o®—invariant and it has reducible
fibers described by L and a unique section E C Fix(c%). Moreover , if g > 4 then 7 is
o—invariant .

Proof. Since Pic(X) = S(0®) = U@L the first half of the statement follows from [5, Lemma
2.1, 2.2]. On other hand, since o® fixes a curve C of genus g > 1, then C intersects each
fiber of 7 in at least two points. This implies that o® preserves each fiber of 7 and acts on it
as an involution with four fixed points. By [6, Theorem 6.3] we have that the Mordell-Weil
group of 7 is MW (m) = Pic(X)/T where T denote the subgroup of Pic(X) generated by
the zero section and fiber components. Since L is a root lattice and Pic(X) = U & L we
have that MW () is trivial, hence 7 has a unique section E. Since o® preserves each fiber
of 7 and FE is invariant, we have that F is fixed by ¢®. This implies that C intersects each
fiber in three points and one fixed point for the action of ¢® is contained in the section E.

Now we will prove that 7 is o—invariant if ¢ > 4 . Let f be the class of a fiber of 7.
The automorphism o preserves the curve C, and we have that CE = 0 (the fixed curves
for o® can not intersect). Assume that f # o*(f) then they intersect in at least 2 points.
Indeed if fo*(f) = 1 then this is a fixed point of o on f and so either C is fixed by o which
is not possible, or E is fixed by ¢. This is not possible too, since otherwise the action of o
on the basis of the fibration would be the identity and so f = o*(f), a contradiction. Now
applying |2, Lemma 5| we find that:

=6

o2 2(C - f)? 2-9
29-2=0 < 1S 3

This implies g = ¢(C) < 4. O

Theorem 3.3.2. Let o be an automorphism of order 16 acting non-symplectically on a
K3 surface X and assume that Pic(X) = S(0®) has rank 6. Then o fizes at most one
rational curve.

The corresponding invariants of o are given in the Table 5.3. In any case ng13 =
ns12 = Ne,11 = 0 and we have (n215,13,14, 17,10, M8,9) = (4,1,1,0) in the first case and
(n2,15,n3,14, 77,10, n8,9) = (0,1,1,2) in the second case.

m? mt m l T N k N’ g(C) Pic(X)
2 0 0 0 6 6 1 4 7 U® Dy
2 0 0 2 4| 4 0 2 6 U@) @ Dy

Table 3.2: The case rk Pic(X) = 6.
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Proof. By the classification theorem for non-symplectic involutions on K3 surfaces given
by Nikulin in |9, §4] we have that (g(C), k,s) is either equal to (5,0),(6,1) or (7,2) .
Observe that the case g(C) = 5 is not possible. Indeed in this case since k s = 0 then
k,a = 0 too and since C' is not fixed by o* by Proposition 3.1.10, we get a contradiction
with Proposition 3.1.10 again. Observe that we have m2 = 2 so that m,4 = 8 by formulas
in Remark 3.1.1. This means that the automorphism o can not have I,« > 0 by [2,
Theorem 8.1|. This implies that /,4« = 0 and by [2, Theorem 6.1] or [14, Main Theorem 1]
we have two possible cases that we recall below, both have m} = 0.

The case (g(C), k,s) = (6,1). The automorphism o of order 4 fixes one rational curve
and six points on C' by [2], [14]. By Riemann-Hurwitz formula applied to the automorphism
o on C we have that:

29(C) — 2 =deg (01.)(29(D) — 2) + deg R,

where D = C/(0|,,) is the quotient curve and R is the ramification divisor. Since deg (0),) =
8 (where o acts on C' as an automorphism of order eight) we get:

29(C) —2=28(29(D) —2) +deg R,

thus

29(C) 414 — degR
16 B

Such that deg R = 7N’ + 3(2h) + (4u) since ¢ acts on C' as an automorphism of order
8 , where we denoted by N' the number of fixed points by o on C, 2h the number of
interchanged points by ¢ on it and by 4u the number of permuted points on C' of ¢. Since
g(D) € Z>o we have:

9(D).

29(C) +14 — (TN 4+ 6h +4p) =0 mod 16, (1)

Hence for g(C') = 6 one can find by (I) that either o exchanges two fixed points and
permutes the other four or o fixes two points and the other four are exchanged two by
two. The first case is not possible since then N = 2 and by Proposition 3.1.8 we know that
N > 4. So we are in the second case. Since again N > 4 then the rational curve is invariant
but not fixed and so N =4 and by Remark 3.1.9 we have (n3 14, 17,10, 789) = (1,1,2) the
others mn; s are zero. We have moreover that k,2 = 1 and N,2 = 6 so combining the
Lefschetz formulas we have r +1+2m =6,4=24r -1, 6 =2+ r+1—2m — 2. That
gives m = 0 and r = 4, [ = 2. This is the second case in the Table 3.3.

The case (g(C), k,s) = (7,2). The automorphism o of order 4 fixes one rational curve,
four points on C and two points on the other rational curve see 2], [14]. By relation (I)
of Riemann-Hurwitz formula applied to the automorphism o on C we find that either o
exchanges two by two the four points or it fixes each of the four points. In the first case since
N > 4 we have that the two rational curves are invariant and they contain 2 fixed points
each, so that N = 4 by Remark 3.1.9. Then (n3,14,77,10,78,9) = (1,1,2) so that k,2 =1
and N,z = 6. We have ny 7 +ns3¢ = 6 and since ng 5 = 0 (we have k,4 = 1) we get nzg = 1
and ng7 = 5. Using Proposition 3.1.8 and 3.1.11 we compute here that (r,l,m) = (4,2,2)
and we have Pic(X) = U @ Dy by [2, Theorem 6.1]. By applying Proposition 3.3.1 we
know that the K3 surface X carries a o-invariant elliptic fibration with a singular fiber
I;. Since the action is not trivial on Pic(X) the automorphism o should act non trivially
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on Ij. Since C intersects in three points the fiber I then the only possibility is that o
exchanges two components of multiplicity one. Then the third point on C' would be fixed
but this is not possible. So the action of o on C fixes the four points. Observe that then
the number of fixed points for o2 satisfies na7 +n3e > 4 so that k,2 = 1 by Proposition
3.1.11. This again gives no7 + nge = 6 and so ng5 = 0 and na7 = 5,n3e¢ = 1. Finally
observe that the case (N, k) = (8,0) is not possible for o by Remark 3.1.9 and so we have
(N,k) = (6,1). Again by Remark 3.1.9 we have (ng 15,1314, 77,10) = (4,1,1). In this case
we have r+1+2m=6,r—01=6,r+1—-2m=6. Wefind m=0,r =6, =0. So o acts
trivially on Pic(X) and this is the first case in the table. O

3.4 The rank fourteen case.

We assume finally in this section that S(c®) = Pic(X) has rank 14. We recall the notation
that will be used here let C' denotes the o®-fixed curve of genus > 1 (where the case with
g(C) = 1 and rk Pic(X) = 14 is studied in Section 3.2). and N’ denotes the number of
fixed points that are contained in C. Finally, let k,; be the number of fixed rational curves,
and N,; for j = 1,2, 4,8 be the number of fixed points in Fix(¢7), and by 2a,4 the number
of exchanged smooth rational curves by o* and fixed by o®.

Theorem 3.4.1. Let o be an autornorphism of order 16 acting non symplectically on a K3
surface X and assume that S(o®) = Pic(X) has rank 14. Then the K3 surface is one of
the surfaces described in Proposition 3.2.2 with a fixed elliptic curve for the automorphism

o or it has:

m?  m! m l r N k N ¢ Pic(X)
1 0 0 1 13 12 1 2 3 U® Dy Eg
1 0 1 1 11| 10 1 2 2 U2) @ D1 & By
1 0o 1 5 7] 4 0 2 2 U(2) & Dy @ Es

Table 3.3: The case rk Pic(X) = 14.

Proof. By [9, §4] we know that for the genus g := g(C) of the fixed curve by o® and the
number k,s of rational curves (different from C') holds:

(g,k‘as) = (073)7 (174)7 (275)7 (376)

The case g(C) = 0. We are in the case of [2, Theorem 5.1] for 0%, so we have
(rga,lya,mga) = (10,4,4) with (Ny4, kya,a,1) = (6,1,0) since ly4,mya € 47 by Remark
3.1.1. On the other hand, since N,4 = 6 and k,s = 3, we have N = 4,6,8 by Proposition
3.1.8. Moreover since k,4« = 1 then k, 2 and k are 0 or 1.

Assume first k,2 = 0 since o* acts in a different way on the four rational curves (i.e.
o fixes some curves pointwisely while it leaves the other curves invariant with two fixed
points by o* on each one of them), these must be preserved by ¢ and so also by o2. We
have ng5 = 2, na 7 = 3 = n3 6 by Remark 3.1.12. These contradicts Proposition 3.1.11. If
ky2 =1 then ny5 = 0 and no 7 = 3 = nge. This again contradicts Proposition 3.1.11.
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The case g(C) = 1. We have already study this case in Section 3.2, where we proved
in Theorem 3.2.2 that o acts as an automorphism of order four on C' and we given the
corresponding invariants of ¢ in this case.

The case g(C) = 2. By Proposition 3.1.10 we have k,s« > 1 so that o* fixes at
least a rational curve. Moreover by formulas of Remark 3.1.1 we have r 4 + 1,4 = 14 and
lya,mya € 47. Observe that m,4 = 4m2 = 4. By [2, Theorem 8.1] if I,4+ > 0 then we have
lga +mga = 4 or 8. The first case is not possible, if [,4 + m 4 = 8 then [,4« = 4 and by [2,
Theorem 8.1| we have k4 = 1.

Observe that o preserves or permutes or exchanges two by two the four rational curves
not fixed by o (where k,s = 5) so that in any case N,4 > 8. By [2, Proposition 1] we
have N,s+ = 6 which contradicts the previous inequality. Hence .4+ = 0 and so o? acts
trivially on Pic(X). By [2, Theorem 6.1] we have (m04,rg4,N1,N;4, kga) = (4,14,4,6,3)
where Nja = Ny + NC;4 and NC;4 is the number of fixed points on C. So we have 4 points
contained in the two rational curves that are o*-invariant but not fixed. We call these
curves Ry and Ry. We study now the action of o and 2 on the 5 rational curves, fixed by
o8, and on C.

The automorphism o2. We have k,> < 3 and at least one of the five curves is preserved
or fixed. By using Remark 3.1.12 we have: ny 5 € 2Z (points of this type can occur only on
the rational curves) and no 7+ n3e < 10 (we have N,4 = 10, at most 6 fixed points are on
C and points of this type are not contained in rational curves that are fixed for ¢ but can
be contained in the two rational curves that are only o-invariant). By using Proposition
3.1.11 we obtain that k,> < 2. If k,2 = 0, since the action of ¢# is not the same, then all
the rational curves are preserved by ¢? in particular n45 = 6 and ng7 > 2 ngg > 2. This
contradicts Proposition 3.1.11. We are left with the cases with k,2 =1 or k 2 = 2.

i) k,2 = 2. By Proposition 3.1.11 we get ng7 + n3 = 10 this means that the curve
C must contain six fixed points for 0 and the other four fixed points are contained in
the two o*-invariant curves R; and Rs. In particular we have no7 > 2 and nge > 2, and
n45 = 2. Since by Proposition 3.1.11 we have ny 5 = 2n3¢ — 4 we get nze = 3, na7 = 7,
N,2 = 12.

ii) k,2 = 1. By Proposition 3.1.11 we have ny 7 + n3 ¢ = 6. Observe that for the same
reason as above the remaining rational curves can not be exchanged two by two. So these
are invariant. This gives no7 > 2, nze > 2 and ng5 = 4. Using Proposition 3.1.11 we
obtain that ng7 = n3s = 3. And two fixed points are contained in C. The other points on
C fixed by o* form a o-orbit of length four.

The automorphism o. First observe that using Riemann-Hurwitz formula on C' (see
relation (I) in Theorem 3.3.2) we have two possibilities: C' contains 2 fixed points and the
other four points are permuted by o in one orbit (this is case ii)) or the six points are
exchanged two by two and so fixed by o2 (this is case i)).

i) In this case o exchanges two by two the points on C. We have ns 12 = ng413 = 1
since these two points correspond to the two fixed points with local action (4,5) for o
and are contained in a rational curve (see Remark 3.1.7). Assume that Ry and Rp are
not exchanged. We have no 15 + n7,10 + 13,14 + ne,11 = 4 and n 15 = 13,14, N7,10 = N6,11-
But this contradicts equation (3.1.5) in Proposition 3.1.8. If R; and Ry are exchanged we
have n314 = ng 11 = 0, n215 = n710 = 0 and n5 12 = n413 = 1. But this contradicts the
equality n3 14 — ng,11 = 1 in Proposition 3.1.8.

ii) In this case C contains two fixed points for . We have ngg = 2w, with w = 0, 1.
Moreover by Remark 3.1.7 we have ns 12 = n413 = 2 or n512 = ng13 = 0. If ngg = 2
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so that k, = 0 an easy computation using the equations of Proposition 3.1.8 shows that
the first case with ns12 = mn413 = 2 is not possible. If n512 = n413 = 0 again using
Proposition 3.1.8 we find that n314 = n710 = 1 the other n;, are zero. One computes
(royleyme) = (7,5,1) and we have Pic(X) = U(2) @ Dy @ Eg. Observe that in this case
the remaining o®-fixed rational curves are exchanged two by two by o. If ngg = 0 so that
ks = 1 again one computes using Proposition 3.1.8 that :

(N7 k7 ng.9, n2,157 n3,14,M4,13, 715,127 nﬁ,lla n7,10) = (107 17 O? 37 27 27 27 17 0)

and (rg,ly,my) = (11,1,1). Moreover we have Pic(X) =U(2) @ Dy @ Es.

The case g(C) = 3. By Proposition 3.1.10 we have k,4 > 1 so that o? fixes at least
a rational curve. We have moreover by formulas of Remark 3.1.1 that r 4 +[,4 = 14 and
lya,mya € 47 and observe that m,« = 4m2 = 4. By [2, Theorem 8.1] if [« > 0 then we
have [ 4 +mg4 = 4 or 8. The first case is not possible, if [j4 + mys = 8 then I« = 4 and
by [2, Theorem 8.1] we have k,4« = 1. Observe that o preserves or permutes some of the
five rational curve not fixed by % so that in any case N4 > 10. By [2, Proposition 1] we
have N_1 = 6, which is not possible. Hence l,4 = 0 and so o* acts trivially on Pic(X).
By |2, Theorem 6.1] we have (mga,7,4,n1,n2,ksa) = (4,14,6,4,3) where Nya = ny + no
and ng is the number of fixed points on C'. We have hence 6 points contained in the three
rational curves that are o%-invariant but not fixed. We call these curves Tj, i = 1,2, 3. We
study now the action of ¢ and ¢? on the 6 rational curves fixed by ¢® and on C.

The automorphism 2. We have k 2 < 3 and observe that since o can not permute the
four curves, since the action of o is different, then each curve is preserved by . Moreover
we have ny 5 € 27, and these are at most 6, in fact points of this type can occur only on
the rational curves, and ns 7 + nze < 10 (we have at most 4 fixed points on C' and points
of this type are not contained in rational curves that are fixed for o*, but can be contained
in the three rational curves that are only o*-invariant). Again by using Proposition 3.1.11
we find that k,2 < 2. If k,2 = 0 then no7 + n3 e = 2 but since all the rational curves are
preserved ny5 = 6 and we get a contradiction using Proposition 3.1.11. We are left with
the cases with k,2 =1 or k2 = 2.

i) ky,2 = 2. Here we get na7 + nge = 10 this means that the curve C' must contain
four fixed points for o2 and the other six points are contained in the three o
curves 11, T5 and 73. In particular we have ng7 > 3 and n3g¢ > 3, ny5 = 2. Moreover
nas = 2n3e — 4 so we get ng e =3, nay =7, Ny2 = 12 (by Proposition 3.1.11).

ii) k,2 = 1: Here we get na7 + n3g = 6 by Proposition 3.1.11. Observe that for the
same reason as above the remaining rational curves can not be exchanged two by two. So
these are invariant. This gives no7 > 3, n3¢ > 3 and ng5 = 4. We get using Proposition
3.1.11 that na7 = nge = 3, and so the four points on C fixed by o* form a o-orbit of
length four.

The automorphism ¢. By using Riemann-Hurwitz formula there are two possible ac-
tions on C: The automorphism o exchanges 2 points and fixes the other two (this is case
i)) or the four points form a o-orbit (this is case ii)).

i) We have ng g = 2w and since k,2 = 2 we have 0 < w < 2. Moreover ns 12 = ny4,13 = 1
(since these two points correspond to the two fixed points with local action (4, 5) for o2).
If w=0and k = 0, so that the two o?-fixed curves are exchanged by o, then using
Proposition 3.1.8 one sees that this case is not possible. If w = 0 and & = 2 using
Proposition 3.1.8 we get N = 14 which is impossible by looking at the geometry (indeed
in this case we have N < 12).

-Invariant
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If w=1, then £ =1 and we find N = 12 with
(N, k,ng9,n2,15, n3,14, N4a,13, M5,12, 6,11, N7,10) = (12,1,2,3,2,1,1,1,2).

This is the case in the statement.

If w =2 and k = 0 this is not possible by using equation in Proposition 3.1.8.

ii) We have ngg = 2w and since k,2 = 1 we have w = 0,1. If w = 0 then k =1
and N512 = N4,13 = 2 or n5 12 = N4,13 = 0. If N5 12 = N4,13 = 2 we obtain ne,11 = 1
and n7 19 = 0 which is impossible since the fixed points by o are contained in the rational
curves that are fixed by ¢® (see Remark 3.1.7). If 1512 = 14,13 = 0 then two of the o-fixed
curves are exchanged. By using Proposition 3.1.8 we get n719 = 1, no15 = 4, ng14 = 1
(the other ny s are zero), but this is not possible since the isolated points fixed by o are
contained in rational curves (see Remark 3.1.7).

If w =1 then £ = 0 then again Nn5,12 = N413 = 2 or n512 = N413 = 0. By using
Proposition 3.1.8 we see that the first case is not possible. If n512 = n4 13 = 0 then two
of the o*-fixed curves are exchanged. By Proposition 3.1.8 we find N = 4. This is not
possible indeed if the curves T; are preserved then N = 6, if two of them are exchanged
we get N = 2. In any case we get a contradiction. O

Remark 3.4.2. If tk S(08) = 14 then the automorphism o acts on S(o8)t @ C by the
eight primitive roots of unity CiG, 1 =1,3,...,15. In particular each eigenspace is one-
dimenstonal, so by applying the construction for the moduli space of K3 surfaces with
non-symplectic automorphisms as described in [25, §11], we see that in fact this is zero
dimensional. This is the case in Theorem 3.2.2 and in Theorem 8.4.1. If tk S(c®) = 6
using the same construction as above one finds that the dimension of the moduli space is
one.

3.5 Examples.

In this section we give an example for each case in the classification of the non-symplectic
automorphisms of order 16. This shows more precisely that all the cases in the classifiction
do exist. We construct all this examples by using elliptic fibrations on K3 surfaces. The
main definitions and properties of elliptic fibrations, that we need, are contained in the
Section 1.3.

Example 3.5.1. Consider the elliptic fibration in Weierstrass form given by :
y* = 2 + ax + bt

where a,b € C and the automorphism o (z,y,t) = (—x, iy, ({gt) (recall that i = (f;). By
making the coordinate transformation that replac e z by Az and y by A% for a suitable
A € C we can assume that a = 1. Moreover since b # 0 we can apply a coordinate
tranformation to ¢ and so assume that b = 1 too. Our equation becomes:

y2 =3+ +1t8
The fibers preserved by o are over 0,00 and the action at infinity is (see [5, §3|):

(w/th g/t 1/t) v (—iz/t*, (Tey /1%, Cig1/t).
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The discriminant of the fibration is
A(t) =4+ 2710

We have that ¢ = oo is an order eight zero of A(t), and A(t) has 16 simple zeros. Looking
in the classification of singular fibers of elliptic fibrations on surfaces (e.g. [17, Section 3|)
we see that the fiber over t = oo is of type IV* and the fibration has 16 fibers of type I7.
In particular the fiber over ¢ = 0 is smooth. By [5, §3] a holomorphic two form is given
by (dt A dzx)/2y and so the action of o on it is by multiplication by (16. In fact we can
understand the local action of the automorphism o at the fixed points on C. If we look at
the elliptic fibration locally around the fiber over ¢ = 0 the equation in P? x C is given by:

G(x,y,2,t) = 2y — (2 + 2%2 4+ 23%) = 0

where (z : y : 2) are the homogeneous coordinates of P? and the two fixed points for the
automorphism o on the fiber ¢ = 0 are pg := (0 : 1 : 0) and p; := (0 : 0 : 1). In the
chart z = 1 and on the open subset 0G(x,y,1,0)/0z # 0 that contains the fixed point
p1 = (0:0:1), a one form for the elliptic curve over ¢t = 0 is:

dy/(0G(z,y,1,0)/0x) = dy/(—3z — 1).

Here the action of ¢ is a multiplication by ¢ so that the action on the holomorphic two
form

dt A (dy/(—3z% — 1))

is a multiplication by (i as expected, and we see that the local action is of type P13
Doing a similar computation in an open subset of the chart y = 1 that contains the
fixed point pg we find again the same local action. So we are in the first case of the
Theorem 3.2.2 with N = 8. On the other hand the fibration admits also the automorphism
y(z,y,t) = (—x, —iy, (P6t). This acts also by multiplication by (16 on the holomorphic two
form, so «y is not a power of ¢. In this case a similar computation as above shows that the
local action at the fixed points on the fiber C is of type P*!2, so we are in the second case
of the Theorem 3.2.2.

Example 3.5.2. 1) The case ¢(C) =7, (r,1) = (6,0), Pic(X) = U & Dj.
Consider as in |7, Section 3.4| the elliptic fibration:

y? = 2 + 2z + (bt 1)

with b € C and with the automorphism o(z,y,t) = ((%z, Gy, (%t) (we write here the
fibration in a slightly different way as given in [7]). On t = 0 the fibration has a fiber of
type I; and on t = oo the fibration has a fiber of type I1. The action on the holomorphic
two form (dz A dt)/2y is a multiplication by (36. This is a one dimensional family and
for generic b the action is trivial on Pic(X). So we are in the first case of Theorem 3.3.2.
Observe that the fiber of type I contains the four fixed points with local action of type
P?%15 and the invariant elliptic cuspidal curve over t = oo contains the fixed point with
local action P43 (which is also contained on the section of the fibration) and the point of
type P710. In particular observe that the curve C of genus 7 meets the fiber of type IT at
the singular point with multiplicity 3.

Observe that if b = 0 we get the elliptic fibration with the order 32 automorphism

032($7yat) = ((31»2855’ %21y7<§2t)
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as described e.g. in [15]. The automorphism o is the square of the automorphism o23.

2) The case g(C) =6, (r,1) = (4,2), Pic(X) = U(2) ® Da.

The surfaces of this kind are described in the paper [13] and they are double covers of
P? ramified on a reducible sextic which is the product of a smooth quintic and a line. We
consider the special family with equation in P(3,1,1,1):

22 = zo(apxgrs + foxd + fradad + Boxial).

Observe that the quintic curve is smooth and the K3 surface has five A; singularities over
the points of intersection of the quintic curve and the line. The K3 surface carries the
order 16 non-symplectic automorphism

o(z:xo: w1 x0) = (220 : Gy : (o).
This acts by multiplication by (16 on the holomorphic two form:

(da A dy)//

where f(x,y) = 0 is the equation of the ramification sextic in the local coordinates = and
y. An easy computation shows that the automorphism fixes the points:

(0:1:0:0), (0:0:1:0), (0:0:0:1)

Observe that the point (0:0:0: 1) is in fact one of the five A; singularities on the K3
surface. If we resolve it we find a fixed point on the strict transform of C' which is the
quintic curve on P? (that have genus six) and one fixed point on the strict transform of L
which denotes the curve {xg = 0}. The other two fixed points are contained respectively
in C and L (and their respective strict transforms). Observe that the automorphism o
exchanges two by two the other points of intersection of C' with L.

Example 3.5.3. 1) The case g(C) = 3 (see [14]). Consider the elliptic fibration:
Y2 =2+t + 17

This carries the order 16 automorphism o(z,y,t) = ({3, ({ty, (1§t). The discriminant
is t9(4 + 27t%) so over t = 0 the fibration has a fiber of type I} and over t = oo the
fibration has a fiber of type IT*. The automorphism o preserves the I1* fiber and fixes
the component of multiplicity 6. The genus 3 curve cuts the fiber I7* in the component of
multiplicity 3. Finally o exchanges two curves in the I fiber (this corresponds to [, = 1),
it leaves invariant the component of multiplicity two and contains two fixed point on it.
Using Remark 3.1.7 it is easy to find the local action at the 12 fixed points. In this case
we have Pic(X) =U @ Dy @ Es.

2) The case g(C) = 2 and k, = 0. We consider the K3 surface double cover of P?
ramified on a special reducible sextic as in Example 3.5.2; 2). We consider the quintic with
a special equation, more precisely we assume that the reducible sextic (L = {xg =0})UC
has the equation:

xo(xgrs + 25 — 22323 + 2521) = 0,

and recall that the automorphism is:

o:(z:xp: 11 x2) (C%z DX Cg:vl : Cgacg).
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The line L = {xg = 0} meets the quintic in the point (0 : 0 : 1) and two further points
(0:1:1)and (0: —1:1), that are in fact exchanged by the automorphism o. By studying
the partial derivatives of the equation of C one sees that these are singular points. These
are in fact As singularities. We explain the computations in detail for the point (0:1: 1).
In the chart o = 1 the equation of C' becomes:

m%+x‘;’—2x:{’+m1:0

We translate the point (0, 1) to the origin and we get an equation in new local coordinates
(here zp = y):

(23 4502+ 8x+4)+y* =0

So we have a double point at (0,0) and by making a coordinates transformation as in |22,
Ch. II, section 8] we obtain the local equation:

w2+y4:0

which is an As singularity. Now as explained again in [22, Ch. II, section 8| or also in
[13, Lemma 3.15] this gives a Dg singularity of the reducible ramification sextic. The same
happens at the point (0 : —1 : 1) since the two points are exchanged by o. This means
that the K3 surface defined by

22 = xo(xgze + 25 — 20302 + 2hay)
has two Dg singularities and one A; singularity (coming from the intersection point (0: 0 :
1)). Let X be the minimal desingularization of the double cover. The rank of the Picard
group is at least 14 but since the automorphism of order 16 acts non-symplectically on
it, the rank is exactly 14 and Pic(X) = U(2) @ Dy ® Eg. Observe that the (—2)-curve
coming from the resolution of the A; singularity can not be fixed, because it intersects C
and L on X (we call again in this way the strict transforms) that are o8-fixed. Moreover
since the two Dg singularities are exchanged we have k = 0. Observe that the induced
automorphism on P? fixes also the point (0: 1:0) € L and the point (1:0:0) € C which
together with the two intersection points with L and C of the exceptional (—2)-curve on
the A; singularity gives N = 4.

3) The case g(C) = 2 and k, = 1 (see [26]). We consider the elliptic fibration in
Weierstrass form with the non-symplectic automorphism of order 16 :

y2 = .’IJ3 + td(t4 - 1)%7 o: (xa yvt) = (C166x7 C?ﬁyv <i46t)

This fibration has five fibers I1T (one over t = co) and one fiber II1T* over t = 0. An easy
computation using the local action at the fixed points shows that we have k, = 1 and 10
isolated fixed points.



Appendix A

X defined by a quartic.

In this appendix we classify all quartic surfaces that are (affine) invariant for the action of
some automorphism of order 8 of P? acting non-symplecticaly on the quartic.
Classification:

Let X be a K3 surface defined on P? as the zero set of a homogeneous polynomial
fa € C[Xo, X1, X2, X3] of degree four. And let u be a purely non-symplectic automor-
phism of order four on it. Then the automorphism p and the surface X are one of the
following cases (we consider here only equations of X that are affine invariants):

[1]
w(Xo, X1, X2, X3) = (iXo, X1, X2, X3)
or
/’L(X(]: X17 X27 X3) = (iXO7 _X17 _X27 _X3)
Where
X = a1 X§ + ae X{ + a3 X3 + as X3 + a5 X3 Xy + a6 X, X3 + a7 X3 X5 + as X, X5
+ag X2 X3 + a10 X3P X3 + a11 X2X2 + a12 X3 X5 + a13 X, X+
a14X12X2X3 + a15X1X22X3 + a16X1X2X§.
[2]
,"L(XCU X17 X27 X3) = (Z.X()? _X17 _X27 X3)
or
w(Xo, X1, X2, X3) = (iXo, X1, X2, —X3).
Where
X = a1 X§ + aa X{ + a3 X3 + as X5 + a5 X3 Xy + a6 X1 X3 + ar X3P X3 + ag X2 X3
+CL9X22X§ + a10X1X2X§ + aquXng + a12X3X2X3.
[3]
w(Xo, X1, X2, X3) = (iXo,iX1,iX2, X3)
or

w(Xo, X1, X2, X3) = (iXo,iX1,i X2, —X3).
73
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Where

X = a1 X§ + a2 X+ a3 Xy + aa X3 + as X3 Xy + as X, X5 + a7 X3 X, + as X X7+
(LngXQ + aloXng + (IHXgXlXQ + a12X0X12X2 + CL13X0X1X22 + a14X12X22 +
a15XgX12 + a16X§X22.

[4]
M(X07X1aX27X3) = (iX0>iX17_iX27X3)

or
M(X07 Xla X27 X3) = (iX07 ina _iX27 _XS)

Where

X = a1 X§ + a2 X{ + a3 Xs + aa X§ + as X3 X + a6 Xy X3 + a7 X X, X3+
asXoXo X3 + a9 X, Xy X3 + a10X? X3 + a1 XEX? + a12 X3 X3.

Now let o be a purely non-symplectic automorphism of order 8 such that o? = j where
o(Xo, X1, X2, X3) = (C§X0, (§X1,(§X0, (§X3).
Thus we are in one of the following cases:

[L ] If pis either
/’L(X07X17X2aX3) = (iXOaX17X27X3)

or
w(Xo, X1, X2, X3) = (iXo, —X1, — X2, —X3).

Then we have :

X = a1 Xt + a2 X3 + as X + as X3 Xy + a5 X, X3 + a6 X3 X3 + ar X, X5 + as X2 X2+
a9 X2 X3 + ajo X2 X3 + a1 X3 X5 + a12Xo X3 + a13 X7 X, X5

Where
(a,b,e,d) = (1,4,4,4),(1,8,8,8).
X = ale + GQXé + Cl;g)(g1 + a,4X:13X2 + a5X1X§ + a6X12X22—|—
ar X2X3 + as X3X3 + ag X, X, X3
Where
(a7 b? c’ d) = (1747 47 8)’ (1787 87 4)'
_ 4 4 4 3 3 22
X = a1 X7 + a2 X5 + a3 X3 + ag X7 X5 + a5 X, X3 + ag X7 X5+
a7X12X§ + a8X22X§ + a9X1X22X3.
Where

(a’7 b? C’ d) = (1747 87 4)’ (]‘7 87 47 4)'
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X = a1 X{ + aa X§ + a3 X5 + as X3P X2 + as X2 X3 + ag X3 X3+
ar X3 X3 + ag Xy X + ag X7 X, X4

Where
(a,b,c,d) = (1,4,8,8),(1,8,4,4).

[2 | If p is either
M(X07X17X27X3) = (Z.X07_X17_X27X3)

or
,u(XOa le X27 XS) = (/iXou X17 X25 _XS)

Then we have the following:

X = a1 X} + a2 X3 + a3 X3 + as X3 Xy + a5 X, X5 + ag X7 X3
+ar X2 X, X5 + as X3 X X5

Where
(a,b,c,d) = (1,2,2,4)(1,2,2,8)(1,6,6,8)(1,4,4,2)(1,8,8,6).
X = a1 X} + aa X5 + a3 X5 + as X2 X3 + a5 X, X5 X3 + ag X5 X X5
Where
(a,b,c,d) = (1,2,6,8)(1,8,4,2).
X = a1 X} + aa X§ + a3 X§ + as X2 X2 + a5 X; X5 X3 + ag X2 X, X,
Where
(a7 b) C? d) = (17 27 67 4)(17 87 47 6)
X = a1 X} + aa X§ + a3 X§ + asa X2 X2 + a5 X; X5 X3 + ag X2 X, X,
Where
(a7 b7 C, d) = (]‘7 67 27 8)(17 47 87 2)
X = a1 Xt + aa X3 + as X3 + as X3 Xy + a5 X, X5 + a6 X2 X3,
Where

(a,b,c,d) =(1,4,4,6)(1,8,8,2).

[ 3 ]If pis either

w(Xo, X1, X2, X3) = (iXo,iX1,iX2, X3)



76

APPENDIX A. X DEFINED BY A QUARTIC.

or
1(Xo, X1, X2, X3) = (iXo,iX1,1 X2, —X3).
Then we get:
X = a1 X35

Where

(a,b,c,d) =(1,1,1,2),(1,1,1,6),(1,1,1,4),(1,1,1,8).

X = a1 X§ + a2 X3 Xy + a3 X, X3 + as X3 Xy + a5 Xo X3 + ag X2 X, Xy + a7 X X2 X,

Where

(a,b,e,d) = (1,1,5,2),(1,1,5,6),(1,1,5,8),(1,1,5,4).
Where

(a7 b? c7 d) = (17 57 57 2)’ (17 57 57 6)’ (17 57 574)7 (17 57 57 8)'

| If w is either

N(X07 Xla X2a X3) = (iX0> ina _iX2> X3)

or
p(Xo, X1, X2, X3) = (iXo,1X1, —1 X2, —X3).

Then we have :

X = a1 X5+ a2 XX, X3 4+ a3 X Xo X3 + as X, Xo X3 + a5 X7 X3 + ag X3 X3,

Where
(a,b,e,d) =(1,1,3,2),(1,1,3,6),(1,1,7,4),(1,1,7,8).
X = a1X§ + CLQXgXl + agXoX:ls + a4X0X2X§ + a5X12X22 + a6X02X22
Where
(a? b? C’ d) = (175737 2)’ (175737 6)’ (1757 77 4)7 (1757 77 8)'
_ 4 3 3 2 22 22
X = a1 X3 + a2 Xg Xy + a3 Xg X7 + ay X1 Xo X3 + a5 X{ X5 + ag X X3.
Where

(a,b,c,d) = (1,5,7,2),(1,5,7,6), (1,5,3,4), (1,5, 3,8).
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X =a1X§ + a2 XX, X3 + a3 X3P X2 + as X2 X3.

Where
(a,b,¢,d) =(1,1,7,2),(1,1,7,6),(1,1,3,4),(1,1,3,8).

Note that the surface X in all these previous cases is not smooth and so the proof
of Remark 2.5.4 in §2.5.1 holds.
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Appendix B

The Case [ = 0.

In this appendix we study the case | = 0, so that r,2 = r (i.e. o* acts as the identity on
S(0?)). We classify more precisely non-symplectic automorphisms of order eight on K3
surfaces which act trivially on the Picard lattice and we give an independent proof (not
based on the classification of order four automorphisms |2]) of [14, Proposition 5.5|. We
recall first some notations. Let 2h be the number of interchanged points by ¢ on the curve
C C Fix(o*) with genus ¢g(C) > 0, and N’ respectively Nl;g be the number of fixed points
by o respectively o2 contained in the curve C. And we denote by k respectively k2 the
number of smooth rational curves fixed by o respectively o2, and by N respectively N, 2
the number of isolated points in Fix(o) respectively Fix(c?). Finally, we denote by 2a the
number of exchanged smooth rational curves by o and fixed (that means pointwisely fixed)
by 02, 2A the number of smooth rational curves interchanged by ¢ and invariants (but not
pointwise fixed) by 2, and by 2a,2 the number of smooth rational curves interchanged by
o? and fixed by o.

Proposition B.0.4. Let o be a purely non-symplectic automorphism of order 8 on a K3
surface X such thatl=0. Thena=A=0 and ngy =r — 6k.

Proof. Assume that A is not zero, thus there are two different smooth rational curves
Gy, G invariants by ¢ such that o(G1) = G and o(G}) = Gy. Let g = [G1] — [G]]
in Pic(X). Thus ¢*(g) = —g such that g # 0 which contradicts with | = 0 (where [ is
the rank of the eigenspace of o* in H?(X,Z) with eigenvalues -1). By the same argument
we can prove that ¢ = 0 when [ = 0. On other hand, by Proposition 1 we have that

ng +ng + ng = 2+ r — 2k since | = 0, thus ny = r — 6k (where ny + ng = 4k + 2). O

We give now a useful proposition showing that N 2 = no+ng if [ = 0. This proposition
proves |14, Lemma 5.2] in a more general case.

Proposition B.0.5. If X has a non-symplectic automorphism o of order 8 such thatl = 0,
then for any isolated point p € Fix(o?) we have o(p) = p.

Proof. Observe that if o2 fixes a curve C' of genus g(C) > 0 , then all isolated points by
o on it are of type P*5. Thus o(p) = p for all p € Fix(o?) since A = 0 by Proposition
B.0.4 (where N> = ny + ng + 4A4). Otherwise, all fixed curves by o2 are rational. Thus
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by computing the topological Lefschetz formula since A =a =0 and g,2 = 0 we get:
x(Fix(c?)) — x(Fix(0)) = 2k,2 + N,2 — (2k + N)
=2(k +n4/2) + (n2 + n3 + 2h) — (2k + na + ng + ny)
= 2h.

On other hand we have that:
x(Fix(0?)) — x(Fix(0)) = 2+ 752 — l,2 — (2 + 7 +1)

= —2m.

Hence we get 2h = —2m, so that h = m = 0 and N, 2 = ny + ng when [ = 0 (where
Ny2 = (ng +n3) +4A + 2h in this case). O

Remark B.0.6. As a direct consequence of the previous proposition one gets that: If o is
a purely non-symplectic automorphism of order eight on a K3 surface X such that | =0
and all the fized curves by o are rational, then h = m = 0 and the following relation hold.

ke =2k — 1. (B.0.1)

In fact one can obtain m = h = 0 by computing the difference x(Fix(c?)) — x(Fix(c))
topologically and using the Lefschetz’s formula. On the other hand, using the fact that
Ny2 = ng + ng = 4k + 2 and the relation N,2 = 2k,2 + 4 in [2, Proposition 1] we find the
relation (B.0.1).

Moreover since a = 0 and the fized points by o on the curve C of genus g(C) > 0 are of
type P>7, P35 we get:
kg2 =k +ny/2. (B.0.2)

Lemma B.0.7. Let o be a purely non-symplectic automorphism on a K3 surface X such
that | = 0. Then o acts trivially on Pic(X) if and only if g(C) = 0 for all C C Fix(c?).

Proof. Observe at the first that if all the fixed curves by o2 are rational, then by Proposition
B.0.5 and computing the difference x(Fix(c?)) — x(Fix(c)) topologically and using the
Lefschetz’s formula one gets that m = h = 0 (i.e. the automorphism o acts triviale on
Pic(X)). On the other hand, suppose that o2 fixes a curve C of genus g(C) > 0. By [2,
Proposition 1] and computing again x(Fix(c?)) — x(Fix(c)) topologically and using the
Lefschetz’s formula we get that

2m = 29(C) + N'. (B.0.3)

On the other hand, since no +n3 = Ny2 and k2 = k+ % by Proposition 2.1.8 and [2,
Proposition 1| we have that :

ng+ng=2—2g(C)+2k+ns— N'.

Observe that the isolated fixed points by o of type P?7, P36 are contained in smooth
rational curves, so that ny = ng (see Remark 2.1.10) and ng = 2k + 2 by Proposition 2.1.8.
We return to the previous relation and we get :

(4k +2) =2 —2g(C) + 2k + (2k +2) — N' + 4, (B.0.4)

so that
29(C) + N =6. (B.0.5)
By (B.0.4) and (B.0.5) we find that 2m = 4 hence o does not act trivially on Pic(X). O
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Proposition B.0.8. Let o be a purely non-symplectic that automorphism of order eight
such that | = 0. Then if C C Fix(o?) with g(C) > 0 we have C is a smooth elliptic
curve. Moreover o acts on C as an involution with the invariants (r,m,m;1) = (10,4,1)

and (k, N) = (1,10).

Proof. In fact by relation (B.0.5) in Lemma B.0.7 one finds the following possibilities:
(9(C),N") = (1,4), (2,2) and (3,0). Moreover, we get that m = [, = 4. The last two cases
are not possible by [2, Theorem 4.1] (since l,2 = 4). On the other hand, o acts on the
elliptic curve C' in the first case as an involution with four fixed points of type P*®. More
precisely, by Proposition 2.1.8 we have N = r + 2 — 2k so we get r = 8k + 2. In fact since
the isolated fixed points of type P%7, P39 are contained in smooth rational curves we have
ny = ng (see Remark 2.1.11), so by Proposition 2.1.8 one finds that ny = 2+ 2k and thus
N = (4k +2) + 2k + 2 = r + 2 — 2k. We can moreover obtain that r,4« = 8k 4+ 6 where
[ =0,m = 4. Observe that k < 1 since r 4 = rk Pic(X) < 20. On the other hand,k > 1
since ny > 4 where o fixes four points of type P*5 on the curve C. So that k = 1 and
(rymi1) = (10,1). O

Theorem B.0.9. Let o be a purely non-symplectic automorphisim of order eight on a K3
surface X acting trivialy on Pic(X), then k =1 and we are in one of the following cases:

mi r | N N (ng,n3,ng) goa k S(o%)
1 6|4 6 (51,00 7 1| U@ Dy
1
2

i 6|6 6 (51,0 6 U(2) ® Dy
2 14| 4 12 (7,3,2) 3 U® Dy & Ex

Proof. Observe at first that by Lemma B.0.7 all the fixed curves by o2 are rational. By
Remark B.0.6 we have moreover that N = N;Q since h = 0 and by relation (B.0.1) we get
E>1.

If £ =1 then k,2 = 1 by relation (B.0.1) of Remark B.0.6 and so ns = 0 by (B.0.2) of
the same remark. Thus (ng,n3) = (5,1) and r = 6 by Proposition 2.1.8. If kK = 2 then
ng = 2 since k2 = 3 = 2(2) — 1 by Remark B.0.6 again. So that (n2,n3) = (7,3) and
r = 14 by Proposition 2.1.8. Similarly one can obtain that for k£ = 3 then ny = 4 and so
ry4 =1 = 22 by Proposition 2.1.8. That gives a contradiction since rkPic(X) < 20. Hence
ry4 = rk Pic(X) is either 6 or 14 if o acts as an identity on Pic(X).

On the other hand, the number of fixed rational curves by o? is given by k4 = k2 +

N _o—N
%+2a02. We get by the same argument in the proof of Proposition B.0.4 that a,2 =

0, and since N, 2 = ny + ng by Proposition B.0.5 and N = N(;Q, ky2 = 2k — 1 by Remark

B.0.6 one obtains that k,« = 2k — 1 + N_2N . Using the classification of non-symplectic
involutions given by Nikulin [9, § 4] (see also [4, Figure 1]) where rk Pic(X) = 6,14 we
get the following possibilities (kya,7, N, g(C))=(2,6,4,7),(1,6,6,6),(6,14,4,3),(5,14,6,2) and
(4,14,8,1). Observe that the last two cases are not possible by Riemann-Hurwitz formula
(see (I) in Theorem 2.7.1).

By the classification theorem of 2-elementary even lattices |10, Theorem 3.6.2] we get
that S(c*) = U @ Dy, U(2) ® D4 for g(C) = 7,6 respectively and S(c*) = U @ Dy @ Fg
for g(C) = 3.

Note that we can use [2, Theorem 6.1] and Riemann-Hurwitz formula with the fact
that N;Q = N’ to obtain the cases appearing in the table. But in this proof we have tried

to find the invariants of o without using the order four automorphism. O
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Appendix C

Tables.

In this Appendix we give the tables for the complete classification of the non-symplectic
automorphisms of order 8 on a K3 surface. These show the invariants of non-symplectic
automorphisms of order eight in all the possible cases. Moreover they also show the cases
when we have an example, we indicate these with / , or when there is not an example , we
refer to this case with X, (and we give the number of examples if we have more than one).
We recall now the invariants that appear in the tables: we denote by k respectively k2
the number of smooth rational curves fixed by o respectively o2. And by N the number
of isolated points in Fix(c). Let N’ respectively N:T2 denotes the number of fixed points
by o respectively o2 contained in a curve C' C Fix(c?) of genus g > 1, 4s = 2a,2 denotes
the number of smooth curves that are permuted by o, interchanged by o2 and fixed by o*.
And we denote by 2a the number of exchanged smooth rational curves by o and fixed (that
means pointwisely fixed) by 2, 24 the number of smooth rational curves interchanged by
o and invariants (but not pointwise fixed) by o2, 2h the number of interchanged points by
o on the curve C, and by g, for i = 1,2,4 the genus of the curve C' C Fix(¢'). Finally,
we denote by 7,1, m and m; the rank of the eigenspaces of (¢)* in H2(X, C) relative to the
eigenvalues 1, —1,¢ and (g respectively.

mi m r 1| (ng,n3,ng) N k Al typeof C' | Example
3 2 3 3| (20,00 2 0 0 T V;
2 2 6 4| (1,1,2) 4 0 1 v* Y/
Table C.1: The case g=1, C C Fix(o).
mi m r L| N (ngnz,ng) N k a A typeofC | Example
3 2 3 3|2 (2,0,0) 0O 0 0 0 Iy V
3 2 5 1|6 (0,2,4) 4 0 0 O Iy vV
2 2 6 4| 4 (1,1,2) 0 0 0 1 v* X
2 2 10 0|10 (3,34 4 1 0 0 v* vV

Table C.2: The case g=1 , Fix(0?) D C ¢ Fix(o).
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mg m r |l | N (ng,ngny) Nk a type of C' | Example
3 2 3 3|2 (200 2 0 0 To X
2 1 10 2|8 (422 2 1 0 Is J
2 1 8 4|6 (024 2 0 0 Is SV
2 1 6 6|2 (200 2 0 1 Is VYV
2 3 4 42 (2000 2 0 0(s=1) Is X
1 0 17 1|14 (644 2 2 0 Ti NN
1 0 11 7|6 (024 2 0 1 g VYV
1 0 9 92 (200 2 0 P L Vi
1 4 5 5|2 (200 2 0 0(s=2) L X
2 2 6 4|4 (1,120 0 0 0 v* X
Table C.3: The case g = 1, Fix(c?) O C ¢ Fix(c?).
rool om N2, M3, M4) N’ h k' a gy S(o%) Example
1 1 5 (2,0,0) 2 1 0 0 9 U(2) X
6 0 4 (5,1,0) 4 0 1 0 7 U & Dy J
i 2 1 1,1.2) 2 2 0 0 6 U(2) & Dy X
6 0 4 (5,1,0) 6 0 1 0 v
T 3 3 (0,2,4) 2 1 0 0 ) U(2) ¢ Eg X
9 1 3 (2,0,0) 2 10 1 X
9 1 3 (4,2,2) 2 1 1 0 v
9 1 3 (4,2,2) 4 1 1 0 4 U @ DJ? v
7 3 3 (0,2,4) 2 3 0 0 3 U(2) @ DY? v
5 5 3 (2,0,0) 2 30 1 J
8 6 2 1,1.2) 0 2 0 1 3 U Es® Dy X
12 2 2 (3,3,4) (4-0) (0-2) 1 0 X
10 4 2 (5,1,0) 4 0 1 1 X
4 0 2 (7,3,2) 4 0 2 0 J
8§ 6 2 (1,1,2) 2 2 0 1 2 | UQ2)®Eso Dy Vi
12 2 2 (3,3,4) p 2 1 0 JV
Table C.4: The case m =0,g,4 > 1.
mi r | N N (ng,ng,ng) g k S(o?) Example
1 6| 4 6 (510 7 1| UoDy ;
i 6|6 6 (L0 6 1| U@aDs ;
5 14| 4 12 (732 3 2| UdDyd Es J

Table C.5: The case rk Pic(X) = S(o) =1 .
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my m r 1| (ng,nzg,ng) N N k a s g, S(o?) Example
3 3 3 1| (1,b,2) 4 2 0 0 0 2 U AP® X
2 4 4 2| (1,1,2) 4 2 0 0 1 2 |[UasAY"®Es X
U® Dy Dg X
Table C.6: The case g,2 > 1.
m r || N N (ng,ng,ng) | @ k A h s | kye N;Q g4 | Example
1 13 3|10 2 (334 |0 1 0 2 1| 3 6 2 X
1 7T 1] 6 4 (5,1,0) 0O 1 0 0 0 1 4 3 X
2 8 2| 6 4 (5,1,0) 0 1 0 0 0 1 4 3 X
Table C.7: The case g, > 1, C ¢ Fix(a?).
m r l ‘ N (na,n3,ng) k ‘ k2 N2 ‘ Example
1 13 3] 10 (3,3,4) 1] 3 10 | v
Table C.8: The case Fix(c?) has only rational curves, k& > 0.
m r I|ls a A| h N N (ng,n3ng) | ke N;2 J,4 | Example
1 2 270 0 0 1 2 2 (2,0,0) 0 4 5 X
1 9 7] 1 1 1 2 4 2 (1,1,2) 3 6 2 X
3 7 5|2 0 0|2 4 2 1,12 |1 6 2 X
1 6 6/]1 1 0]3 2 2 200 | 2 8 3 X
2 6 4|1 0 0 2 4 0 (1,1,2) 1 4 3 X
1 8§ 4|1 0 0|3 6 2 024 |2 8 3 X
1 5 3|0 0 1]0 4 0 112 |1 0 5 X
0 0 1|0 4 2 112 |1 2 4 X
0 0 0|2 4 0 112 |1 4 3 X
0 0 0|2 4 2 1,12 |1 6 2 X
2 6 4]0 0 1]0 4 0 (1,1,2) 1 - 0 X
3 7 51 0 1]0 4 0 112 |1 - 0 X
1 9 710 1 2|0 4 o0 1,12 |3 - 0 v

Table C.9: The case k =a =0,m > 0.
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