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Résumé
Considéré comme l’un des sujets de recherche les plus actifs et visibles de la vision par

ordinateur, de la reconnaissance des formes et de la biométrie, l’analyse faciale a fait l’objet

d’études approfondies au cours des deux dernières décennies. Toutefois, en pratique il reste

un problème difficile en raison de variations de pose, d’éclairage , d’ occlusions ou d’un

environnement non-contrôlé etc. Diverses approches ont été proposées pour l’extraction et la

modélisation de caractéristiques du visage en termes de robustesse, de coût de calcul et de la

précision, chacune comportant des avantages et des inconvénients. Le travail de cette thèse a

pour objectif de proposer de nouvelles techniques d’utilisation de représentations de texture

basées polynômes pour l’analyse faciale.

La première partie de cette thèse, est dédiée à l’intégration de bases de polynômes dans

les modèles actifs d’apparence - un ensemble d’outils statistiques utilisés pour modéliser la

forme et l’apparence d’un objet qui ont prouvé leur efficacité pour la modélisation faciale.

Nous proposons dans un premier temps une manière d’utiliser les coefficients obtenus après

projections polynomiale dans la modélisation de l’apparence. Deux approches différentes

pour remplacer la représentation de texture originale sont détaillées – calculés soit sur des

régions d’intérêts situées autour de points annotés, soit à partir d’une décomposition polyno-

miale multi-résolution de la texture alignée. Ensuite, afin de réduire la complexité du modèle

et puisque la représentation polynomiale d’une image est multi-échelle, nous proposons

de choisir et d’utiliser les meilleurs coefficients polynomiaux en tant que représentation

de texture. En utilisant un algorithme de régression itératif s’appuyant sur des coefficients

polynomiaux compressées nous avons obtenu de très bons résultats d’alignement de visage

démontrant la compacité de notre représentation. Enfin, nous montrons comment, outre

l’utilisation des coefficients polynomiaux pour la modélisation de texture ils peuvent être

utilisés dans un algorithme de descente de gradient étant donné que la décomposition polyno-

miale est équivalente à un banc de filtres.

La deuxième partie de la thèse porte sur l’utilisation des bases polynomiales pour la détec-

tion des points/zones d’intérêt et comme descripteur pour la reconnaissance des expressions

faciales. Inspirés par des techniques de détection des singularités dans des champ de vecteurs,

nous commençons par présenter un algorithme utilisé pour l’extraction des points d’intérêt

dans une image. Notre approche consiste en deux grandes étapes - la détermination du champ

de normales de l’image suivi par la recherche de points d’intérêt dans ce champ, toutes deux

présentées dans le contexte général d’un schéma multi-échelle et multi-résolution. Enfin,

nous montrons comment les bases polynomiales peuvent être utilisées pour extraire des

informations sur les expressions faciales. Puisque les coefficients polynomiaux fournissent

une analyse précise multi-échelles et multi-orientation et traitent le problème de redondance
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efficacement ils sont utilisés en tant que descripteurs dans un algorithme de classification

d’expression faciale. Les résultats expérimentaux confirment que notre approche fonctionne

bien dans ce contexte, tout en étant performante et donnant des résultats de haute précision.



Abstract

As one of the most active and visible research topic in computer vision, pattern recognition

and biometrics, facial analysis has been extensively studied in the past two decades. Yet it

is still a challenging problem in practice due to uncontrolled environment, occlusions and

variations in pose, illumination, etc. Various methods have been proposed for facial features

extraction, with different advantages and drawbacks in terms of robustness, computational

cost and accuracy. The work in this thesis presents novel techniques to use polynomial basis

texture representations for facial analysis.

The first part of this thesis, is dedicated to the integration of polynomial bases in the

Active Appearance Models - a set of statistical tools used to model the shape and appearance

of an object that proved to be very efficient in modeling faces. First we propose a way

to use the coefficients obtained after polynomial projections in the appearance modeling.

Two different schemes to replace the original texture representation are detailed - calculated

on texture patches sampled around key landmarks, or retrieved from a multi-resolution

polynomial decomposition of the full aligned texture. Then, in order to reduce model

complexity and since the polynomial representation of an image is multi-scale we proposed

to select and use as a texture representation the strongest polynomial coefficients. Using a

cascaded regression algorithm based on compressed polynomial coefficients we obtained

very good alignment results demonstrating the compactness of our representation. Finally

we show how in addition to the texture representation polynomial coefficients can be used in

a gradient descent algorithm since polynomial decomposition is equivalent to a filter bank.

The second part of the thesis concerns the use of the polynomial bases for interesting

points and areas detection and as a descriptor for facial expression recognition. We start by

presenting an algorithm used for accurate image keypoints localization inspired by techniques

of singularities detection in a vector field. Our approach consists in two major steps -the

calculation of an image vector field of normals and the keypoint selection within the field

both presented in a multi-scale multi resolution scheme. Finally we show how polynomial

bases can be used to extract informations about facial expressions. Since polynomial coeffi-

cients provide precise multi-scale and multi-orientation analysis and handle the redundancy

problem effectively they are used as descriptors in an facial expression classification algo-

rithm. Experimental results confirm that our approach performs well in this context, being

computationally efficient and giving high accuracy results.



Résumé détaillé
Parce qu’elles fournissent un formalisme théorique efficace pour l’analyse multi-échelles et

multi-orientations, les ondelettes sont efficaces pour traiter les problèmes de changements

d’éclairage et de pose, et sont largement utilisées dans des applications d’analyse faciale.

Encouragés par les résultats de l’utilisation des bases polynomiales pour la modélisation des

champs de vecteurs et l’analyse de mouvements simples du visage nous proposons d’étudier

et d’utiliser une représentation similaire à la représentation en ondelettes, mais plus souple et

adaptative : la transformée polynômiale.

Analyse d’image par bases complètes

Nous avons tout d’abord commencé par une étude de la représentation polynomiale 2D

d’une image et montré comment les coefficients obtenus à partir de projections des intensités

lumineuses d’une image sur une base polynomiale complète peuvent être utilisés pour une

approximation hiérarchique et compacte du signal image, et pour son analyse structurelle.

La technique présentée pour la décomposition polynomiale multi-resolution d’une image

offre une réelle souplesse, notamment vis-à-vis du choix des facteurs de résolution, qui

peuvent être indépendants entre niveaux de décomposition. Par conséquent, la transformée

polynomiale multi-échelle est plus compacte qu’une représentation en ondelettes (de type

Gabor, typiquement utilisée dans l’analyse faciale), permettant de faire disparaître la plupart

des problèmes d’échantillonnage, comme le compromis entre l’échantillonnage fréquentiel

et d’orientations.

De plus, les bases complètes permettent d’obtenir, pour un ensemble donné de valeurs,

une fonction interpolatrice qui est un polynôme d’osculation du premier ordre (ie tel que

∀x(u,v) ∈ D,PI

(

x(u,v)
)

= I
(

x(u,v)
)

). Par ailleurs, on peut considérer la projection sur Bi, j

comme un opérateur de différences finies multi-échelle relatif à la différentiation ∂ i
1∂

j
2 .

Deux techniques de sélection de coefficients polynomiaux pour l’approximation d’une

image ont été proposées et démontrent l’efficacité de notre approche en la comparant aux

ondelettes de Haar, CDF 9/7 et à la décomposition en valeurs singulières.

Modèles actifs d’apparence polynomiaux

Notre motivation pour utiliser une représentation polynomiale dans les AAM (modèles actifs

d’apparence) vient du fait que les polynômes orthogonaux présentent certaines propriétés

liées au système visuel humain [Bla74], notamment une représentation multi-échelle /multi-

résolution de l’information. De plus, une image pourrait être approximée à partir des
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coefficients polynomiaux en ne conservant qu’un nombre défini de coefficients assurant une

certaine énergie cumulée, similaire à l’analyse en composantes principales.

Nous avons commencé cette partie par une présentation détaillée des modèles actifs

d’apparence, un modèle statistique permettant de faire conjointement l’analyse et la synthèse

d’une classe d’objets à partir d’un ensemble d’apprentissage comprenant différentes vues

d’un objet. L’algorithme AAM comprends 2 étapes principales - la modélisation des données

et l’ajustement du modèle, et nous allons voir par la suite comment il est possible d’intégrer

les bases polynomiales dans chacune de ces étapes.

Une texture polynomiale pour les modèles actifs d’apparence

Tout d’abord une nouvelle approche pour la représentation de la texture dans les modèles

actifs d’apparence est présentée. Celle-ci est basée sur l’utilisation de coefficients issus de

projections des intensités lumineuses sur une base polynomiale complète.

Afin d’améliorer la robustesse du processus d’ajustement des AAM, l’idée est de rem-

placer le mode de représentation de texture du modèle de référence par des projections poly-

nomiales sur une base complète orthonormée. Ceci revient à calculer un modèle d’apparence

en remplaçant le vecteur des intensités pixels en entrée de l’ACP (analyse en composantes

principales) par un vecteur de coefficients obtenus par projections polynomiales dans la base

complète sur des textures alignées.

Deux possibilités se présentent pour le calcul du vecteur de coefficients : il pourra être

effectué soit sur des régions d’intérêts situées autour de points annotés (PAAM), soit à

partir d’une décomposition polynomiale multi-résolution de la texture, suivie d’une étape

éventuelle de quantification (FT-PAAM). Dans l’approche PAAM, le modèle AAM donne

des résultats plus précis que celui calculé sur l’ensemble des pixels du modèle AAM, en

particulier dans le cas de la variation d’expression faciale ou pose. Comme nous utilisons

des modèles de texture spatialement localisés autour des points d’intérêt, notre méthode offre

obligatoirement plus de robustesse aux modification locales de texture. Pour l’approche

FT-PAAM, étant donné que l’on obtient une représentation hiérarchique de l’information

lors de la transformation des coefficients de texture via des projections polynômiales nous

observons donc que les points d’intérêt sont déterminés avec une meilleure précision par

rapport aux autres modèles, en particulier pour les points sur le menton, qui sont assez

difficiles à situer et qui ne sont généralement pas pris en compte dans les calculs d’erreurs.

Nous avons ensuite développé le travail de Wolstenholme et Stegmann [WT99] appliqué

à l’alignement de visage où des sous-ensembles de coefficients d’ondelettes ont été mod-
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élisés au lieu des intensités des pixels. En déviant de leur approche, nous avons inclus

les coefficients d’approximation polynomiaux dans le cadre de la régression. La méthode

proposée repose sur deux éléments principaux: l’adaptation des AAM afin d’incorporer des

caractéristiques de texture et donc de la génération de ces dernières en utilisant les bases

polynomiales et de l’algorithme de régression utilisé pour l’ajustement du modèle.

L’algorithme CDAAM est donc spécifié, permettant l’intégration de la compression

polynômiale dans un cadre de régression, en utilisant les paramètres globaux de la forme

conjointement avec les paramètres combinés de formes et de l’apparence. Les coefficients

d’approximation polynomiale sont utilisés pour compresser les données, puis une analyse en

composantes principales est utilisée pour réduire la dimensionnalité de données, similaire

aux AAM traditionnels.

Des expériences en utilisant différentes bases polynomiales pour sept rapports de com-

pression différents ont été effectuées. Il a été constaté que notre méthode permet d’obtenir une

précision d’alignement très stable et de très bons résultats d’alignement tout en augmentant

le taux de compression et en maintenant un faible pourcentage de données. En comparant

notre approche avec les ondelettes de Haar et aux ondelettes CDF 9/7 nous avons conclu que

pour des taux de compression élevés la méthode utilisant les coefficients polynomiaux offre

les meilleurs résultats.

Les expériences d’alignement de modèle sur des images de quatre bases d’images confir-

ment que les deux modèles de texture proposés, ainsi que les modèles compressés permettent

d’obtenir une meilleure précision d’alignement. Nos résultats sont très satisfaisants et mon-

trent que par ses propriétés - sa paramétrisation simple et sa souplesse, la représentation

polynomiale est un substitut prometteur aux représentations classiques de texture.

Algorithme de descente de gradient en utilisant les bases polynomiales

Dans le chapitre précédent, nous avons proposé une amélioration de l’aspect texture dans le

cadre AAM. Toutefois, nous avons vu que l’approche de décomposition polynomiale multi-

résolution est équivalente à un banc de filtres, donc les coefficients polynomiaux peuvent

être utilisés dans un algorithme de descente de gradient.

Nous avons tout d’abord vérifié la validité de notre idée en utilisant les coefficients obtenus

par des projections polynomiales dans la méthode compositionelle inverse de Matthews et

Baker [MB04]. Les resultats préliminaires ont montré l’efficacité de notre approche.
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Nous avons ensuite reformulé l’algorithme compositionnel inverse afin d’avoir un ajuste-

ment à travers de multiples réponses de filtre polynomiaux. En modifiant la fonction d’erreur

nous avons montré que l’intégration de la représentation polynomiale peut être directement

inclue dans la cadre de l’algorithme de Lucas Kanade.

Tout d’abord nous avons intégré la transformée polynomiale dans l’algorithme utilisant

une approximation de Taylor d’ordre 1 à savoir l’algorithme Gauss Newton. En utilisant les

bases polynomiales au lieu de minimiser la somme des différences des carrés entre une image

constante (le modèle) et l’image exemple par rapport aux paramètres de transformation, la

différence entre l’image et le modèle correspondant calculé par des projections dans la base

polynomiale complète est minimisée.

Matthews et Baker ne recommandent pas d’utiliser la méthode de Newton (celle utilisant

une approximation de Taylor d’ordre 2) parce que cette approche utilise une estimation

sophistiquée de la matrice Hesienne qui de plus est présumée sans bruit. Ils affirment

également que l’augmentation du bruit dans l’estimation des dérivées secondes du modèle

l’emporte sur la sophistication accrue dans l’algorithme. Les projections dans la base de

polynômes comprennent une convolution avec des fonctions de pondération utilisés pour

la construction de la base polynomiale. En utilisant une base d’Hermite, l’image d’entrée

est convoluée avec un filtre Gaussien qui limite le bruit dans le calcul des gradient et des

dérivées secondes. Par conséquent, nous présentons l’approche de Newton en utilisant des

projections sur les premier et second ordre d’une base de polynômes.

Deux extensions de l’algorithme d’alignement d’image de composition inverse util-

isant des projections de polynômes on étés presentées ci-dessus. À notre connaissance,

nous proposons la première solution unifiée qui traite la descente de gradient ainsi que la

représentation de la texture dans un seul modèle cohérent.

Les algorithmes ont été évalués sur des ensembles de données complexes, y compris la

base de donnés Multi-PIE qui combine une variabilité en identité, pose, expression faciale et

la variation d’éclairage. En utilisant les projections polynomiales sur la majorité des bases

d’images on obtient de résultats d’alignement améliorés.

De plus en utilisant notre approche, les erreurs moyennes de la méthode de Newton sont

nettement inférieures à celles de la méthode de Gauss Newton.

Nous croyons que le cadre présenté est une base solide pour explorer des modèles plus

complexes de visage, et qui pourrait permettre d’améliorer davantage la qualité d’alignement

dans les images / vidéos.
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Des points d’intérêt aux expressions faciales

Après avoir travaillé sur le suivi de points d’intérêt dans un visage nous allons nous in-

téresser dans cette partie à la détection des points/zones d’intérêt dans une image ainsi qu’à

l’utilisation des coefficients obtenus par projection polynomiale en tant que descripteur pour

la reconnaissance des expressions faciales.

Détection des points d’intérêt dans la caractérisation des textures fa-

ciales

Étant donné que les bases polynomiales ont été utilisées pour la détection et la caractérisation

des singularités dans un champ de vecteurs, nous proposons de les utiliser pour la localisation

précise des points d’intérêt dans les images couleurs, points déduits des singularités du champ

des normales.

Nous présentons donc un algorithme dans lequel le processus de détection des points

d’intérêt dans une image repose sur deux phases fondamentales, la détermination du champ

des normales et la recherche des singularités dans ce champ. Chaque phase est détaillée dans

le contexte général d’un schéma multi-échelle et multi-résolution.

L’approche présentée fonctionne sur des images couleur et en niveaux de gris, le nombre

de points d’intérêt détectés est ajustable sur une large plage par des seuils très simples et

donne la possibilité d’utiliser différents types de bases (et donc d’utiliser différents types

de lissage dans la construction des pyramides d’échelles ) pendant la création de la base

multivariée.

La qualité de notre détecteur est ensuite évaluée sur la base d’images Oxford [MS05]

et quelques séquences de la base de Jared Heinly [HDF12] sur des transformées d’images

contrôlées (en rajoutant artificiellement du bruit, rotation,des transformées d’illumination ou

d’échelle) ainsi que sur de la mise en correspondance sur des images réelles, en utilisant tout

l’ensemble de données conjointement aux matrices d’homographie.

Suite aux expériences nous avons conclu que notre approche est robuste aux changements

d’échelle, d’éclairage et de flou. Cependant, au vu des résultats, même si une orientation est

calculée pour chaque point-clé, notre détecteur de points d’intérêt est sensible aux rotations,

des modifications devraient donc être apportées à notre méthode d’affectation d’orientation.
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Pendant l’étape d’évaluation de notre détecteur, nous avons remarqué que par rapport

aux détecteurs SIFT et SURF sur les images de visage les zones sélectionnées avaient une

signification sémantique, notre détecteur ayant toujours choisi les yeux, le nez et la bouche et

ignorant les zones avec une texture constante telles que les joues ou de la peau du front. Vu

que pendant le processus de recherche, nous ne gardons que les points dominants et robustes

et que dans les images de visages ces points correspondent à des régions clés, nous avons

implémenté un algorithme d’alignement qui utilise les zones d’intérêt détectées par notre

approche.

L’algorithme mis en oeuvre utilise une régression en cascade similaire à celui utilisé

dans le modèle AAM compressé avec les zones d’intérêt en tant que fonctionnalités pour

l’algorithme de régression.

Les résultats montrent que pour les bases de données comportant des rotations faciales

notre approche n’est pas pertinente (suite au problème d’orientation des points détectés) et

que pour des bases de données où le visage est de taille raisonnable (supérieure à 300 pixels

tel dans la base de données MUG) notre approche donne de meilleurs résultats que celle

utilisant toute la texture du visage.

Représentation de texture polynomiale pour la reconnaissance

de l’expression faciale

Alors que de nombreuses méthodes basées sur l’apparence ont été proposées au fil des ans

pour améliorer les performances de la reconnaissance des expressions du visage, la plupart

des descripteurs ne sont généralement pas en mesure de fournir une analyse précise à la fois

multi-échelle / multi-orientation et de gérer le problème de redondance efficacement.

Nous proposons donc dans ce chapitre d’utiliser les coefficients résultant des projections

sur une base de polynômes pour la représentation de texture Pour extraire les caractéris-

tiques faciales, nous proposons de calculer les coefficients issus de projections polynômi-

ales sur chaque point d’intérêt du visage. Comme précédemment, deux modes de calcul

sont disponibles: les coefficients peuvent être calculés soit sur des régions de texture, soit

récupérées à partir d’une décomposition polynomiale multi-résolution.

Pour le premier mode - SR_Poly, le vecteur de caractéristique pour chaque point du

visage est extrait d’un patch d’image de taille 19× 19 pixels centré sur le point. Cette

taille a été choisie pour être similaire à la taille calculée empiriquement pour l’approche en

utilisant des histogrammes LBP. Étant donné que les coefficients polynomiaux fournissent
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une représentation hiérarchique des structures de l’image, nous pouvons réduire leur nombre

pour accélérer les calculs avec peu de perte d’efficacité.

Pour le deuxième mode -MR_Poly, nous utilisons une approche multi-résolution de 3

niveaux. Pour avoir une représentation similaire aux ondelettes de Gabor comme [ZLSA98],

nous utilisons une base complète de taille 3×3. De cette façon, nous aurons une représenta-

tion avec 3 échelles et 9 orientations. Les régions autour de chaque point d’intérêt varient

donc entre 81×81 et 3×3 pixels.

Les résultats expérimentaux obtenus sur deux bases d’images contenant des émotions

comparés à ceux obtenus par trois méthodes de l’état de l’art confirment que notre approche

fonctionne bien avec la reconnaissance de l’expression faciale, donnant des résultats de haute

précision et des calculs efficaces lorsque les points clés du visage sont étiquetés manuellement

ou calculés par un algorithme d’alignement.
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Chapter 1

Introduction

The face is a very rich source of information on non-verbal communication. Although a

human observer is able to perceive naturally some of this information from visual observa-

tions, its analysis remains a very difficult task in computer vision. As one of the most active

and visible research topics in pattern recognition, biometrics and image processing, facial

analysis has been extensively studied in the past two decades due to its many application areas

such as security (surveillance, biometrics), human-machine interaction, robotics, indexation,

behavior analysis etc.

Face analysis research includes several themes : detection, tracking, localization, recog-

nition, authentication, face synthesis. Algorithms used for face analysis face multiple

challenges, including both intrinsic (pose or facial expression of the subject) and extrinsic pa-

rameters, such as partial occlusions or conditions of image acquisition (luminance problems,

shadows).

During the course of this thesis, we will be mainly interested in polynomial modeling

applied to face analysis and more specifically to deformable models : a set of methods that

provide the abstract model or approximation of an object class. They model separately the

variability in shape, texture or imaging conditions of the objects in the class (e.g. human

faces), using a defined number of parameters. Polynomial representations have simple

expression, allow to describe discrete sets of values (ie image pixels) by analytical functions

and fit geometrical forms of images harmoniously. Slowly varying surfaces (like facial skin)

in images are well represented by polynomials and their reconstruction quality is pleasant to

the human eye.

The work presented here will primarily investigate the usage of polynomial representation

applied to multiple face analysis steps, from face texture modeling and compression or facial

keypoints detection to descriptors for facial expressions classification.
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1.1 Motivation

The work presented in this thesis was motivated by a practical application for facial animation,

and more generally the synthesis of human characters and scenes for the entertainment

industry (video games, animated films).

This is usually done through automation or semi-automation of a part of the synthesis

process based on a complex analysis of facial expressions and head movements. Traditionally,

such animations are entirely produced by skilled actors on which are positioned markers.

Although this type of animation gives the best quality results, its associated implementation

process is slow and expensive because it requires a specific makeup and usually involves

multiple cameras. Moreover, it is particularly inconvenient for the actors and for later video

captures. Recent advances in image processing make possible the detection of facial features

that can be exploited for automatic animation, without the use of markers. They provide

animated meshes that can be injected into the synthesis and animation software, both in

post-production and live, thus allowing to save time and providing significant shooting

facilities.

Yet it is still a challenging problem in practice due to uncontrolled environment, occlu-

sions and variations in pose, illumination, etc. Various methods have been proposed for

facial features extraction, with different advantages and drawbacks in terms of robustness,

computational cost and accuracy. Recent advances in image representation show that most

low-level descriptors used in said methods rely on ill-defined frameworks.

A good example of low-level image descriptor is the Gabor space. Neurophysiological

studies show evidence that the human visual system (HVS) is best modeled as a family of

self-similar 2D Gabor functions [Dau85]. Like the Haar transform, the Gabor transform is

considered as the mother wavelet in time-frequency analysis theory and is often used in facial

analysis-related computer vision applications to create sparse object representations.

Despite their high accuracy, the use of Gabor filters in image processing is often criticized

in terms of computational cost. Therefore we decided to study the case of another image

representation having similar properties to the HVS, namely the orthogonal polynomials

[Bla74]. Within the framework suggested by Blaivas, visual analysis in the retina can

be regarded as a process of expansion in orthogonal polynomials basis. Motivated by this

property, and by the results obtained concerning the use of orthogonal polynomials for human

motion analysis in [KTAK10] we propose to use the coefficients derived from polynomial

projection in several face analysis applications.

Therefore we will use bivariate orthogonal polynomials to construct 2D wavelet func-

tions and to define a multiresolution wavelet-like image transform. We will see later that

with respect to classic time-frequency representations, such as wavelets, polynomial basis
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decompositions do not necessarily use a dyadic partition and are therefore more adaptable.

The polynomial multi-resolution decomposition will allow to organize hierarchically the

image information within the frequency domain. As a result, polynomial coefficients can be

used as an efficient alternative to global or redundant texture representations such as Gabor

Wavelets, without losing accuracy.

The purpose of the thesis is to study 2D polynomial modeling for image representations

and see their impact in facial analysis applications (pose/landmark/expression detection for

avatar animation, emotion detection, facial keypoints) in terms of robustness, accuracy and

computational cost.

1.2 Thesis outline

This document is organized into three parts.

First, in chapter 2 a review of state of the art in face landmarking is presented. This

review includes work on parametric and non parametric models for facial landmarks localiza-

tion. This chapter is important to understand the motivation behind the work in this thesis.

Chapter 3 begins with the presentation of a method to generate orthogonal polynomials bases.

Follows the 2D polynomial image approximation that allow to obtain a null approximation

error and the construction of a multiresolution piecewise polynomial decomposition. The

chapter ends with the presentation of the strategies for polynomial coefficient selection in the

approximation process.

Chapter 4 and 5 are dedicated to the integration of polynomial bases in deformable models

and mainly the Active Appearance Models (AAM) algorithm. In chapter 4 we explore the

way polynomial coefficients can be used for texture analysis and representation. First we

detail the AAM framework and propose two different schemes to replace the original AAM

texture representation model by approximating image structures with polynomial projections

on an orthonormal basis. Next we extend an existing work applied to face alignment where

wavelet coefficient subsets were modeled rather than pixel intensities by using subsets of

polynomial coefficients. Deviating from the existing approach the approximation coefficients

are included in a regression framework. In chapter 5 we will take an interest in the generative

fitting, review in details the inverse compositional approach and see how the polynomials can

be used to replace analytically the computation of gradients in the Gauss Newton and Newton

descent gradient approach using projections on the first and second order basis polynomials.
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The last part of this thesis have concentrated on the use of polynomial bases for keypoint

detection and for facial expression recognition. Chapter 6 begins with the definition of the

detection algorithm. First we show how to compute an image vector field of normals and then

we present the selection of interesting points in a multi-scale and multi-resolution scheme.

We evaluate next and compare to nine recent detectors our method on the Oxford dataset. We

detail then how areas detected with our algorithm can be used in the AAM for a sparse texture

model. Finally, in Chapter 7 we detail the way in which the results of the tracking algorithm

can be exploited to the description of expressions. We first present a polynomial based

texture representation model as a descriptor for facial expression information. We introduce

two different modes for the descriptor calculation and compare in terms of computational

efficiency the polynomial and Gabor transforms. We finish by describing the experimental

results on two different databases.

1.3 Main contributions

The contributions of this thesis are consistent with the logical flow of the chapters. The first

contributions rely to the discriminative fitting approach. We propose a new approach for

texture representation in deformable models, and the inclusion of the polynomial coefficients

in a regression framework to have a compressed polynomial texture model. The second

contributions rely with the generative fitting approach. We propose to adapt the inverse

compositional approach using polynomial bases both for the gradient descent algorithm as

for the texture representation model. Finally, we investigate the use of polynomial bases for

interesting points detection and facial expressions classification.

A more detailed description of the contributions is presented here:

• Since model fitting parameters are estimated by minimizing the sum of squared dif-

ferences of texture values between observations and approximations, accuracy and

robustness will rely heavily on choices regarding texture representation. In the polyno-

mial texture representation for deformable models we use coefficients resulting from

polynomial projections of pixel values for image approximation. By comparing our

approach to PCA-based global analysis of raw pixel intensities one can usually find in

AAM texture models we demonstrate it’s ability to improve robustness against pose

and facial expression changes.

• The state of the art AAM texture models explicitly model the value of every pixel

covering an object. To avoid the excessive computational requirements for high
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resolution images we propose to use a compressed polynomial texture model. This

work is an extension of the work of Wolstenholme and Stegmann [SFC04] where Haar

and CDF 9/7 wavelet coefficient subsets were modeled rather than pixel intensities. We

demonstrate the straightforward integration of compressed polynomial coefficients in

the texture model of an AAM and introduce a framework that incorporates polynomial

compression into a cascaded regression.

• Considering the polynomial approximation equivalent to a filter bank, we show first

how the polynomial coefficients can be used in a gradients descent algorithm. Next

we reformulate the inverse compositional algorithm to entertain fitting across multiple

polynomial filter responses and show how using polynomial bases in the Gauss Newton

and Newton gradient descent algorithm limits the computation error and induces better

alignment results.

• We describe an algorithm for points of interest detection that works not only on

grayscale images (as the majority of recent detectors) but also on color images. This

algorithm offers the possibility to use different types of bases (and therefore use

different types of smoothing in the construction of scale pyramids) while creating the

multivariate basis and allows to select the number of detected features using simple

thresholds. The facial regions chosen by our algorithm are also included in an AAM

texture model.

• Finally we propose to use polynomial bases for feature extraction within a system of

facial expression recognition. Two different modes for the description are presented,

using the single or multi resolution approach polynomial projections. In the single

resolution approach the coefficients provide a hierarchical representation of image

structures, therefore their number is reduced to speed-up the computations with little

efficiency loss. The multi resolution approach is showed to be more compact than

a Gabor wavelet representation, thus allowing the disappearance of most sampling

problems, such as the trade-off between orientation sampling and spatial sampling.

• The performance of all the proposed method and algorithms is evaluated and compared

on several databases, demonstrating their accuracy.
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Chapter 2

Recent advances in face landmarking

2.1 Introduction

A landmark represents a distinguishable point present in most of the images under consid-

eration, for example, the location of the left eye pupil. Facial landmark estimation seeks

to automatically locate predefined facial landmarks in face images (Fig. 2.1). It is an

important research area in computer vision in part because digital face portraits are ubiqui-

tous. Accurately modeling human faces is key for a number of visual tasks such as facial

recognition [ND09, WFKVDM97], face reconstruction [KSS11], expression recognition

[Bet12, LMH+06], facial animation [CWLZ13] or biomedical applications [BML+01] to

name just a few.

Figure 2.1 A face with correctly positioned landmarks

Robust facial landmark estimation is very challenging in practice, due to a variety of

factors such as acquisition cameras, physiognomies, illumination effects, occlusions or poses.
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Furthermore accurate and precise landmarking remains a difficult problem since, except for

a few, the landmarks do not necessarily correspond to high-gradient or other salient points.

Hence, low-level image processing tools remain inadequate to detect them, and recourse has

to be made to higher order face shape information.

Early work on the facial landmark localization [EFM09] often addressed the problem as a

particular case of the object part detection problem. However, general detection methods are

not adapted to detect facial landmarks because as mentioned before few salient markings (eg,

centers for eyes, lips) can be characterized reliably by their image appearances. Therefore,

shape constraints or support neighboring areas are essential for augmenting weak local

detectors. According to the type of constraints imposed previous work can be classified into

two groups: the parametric methods and non parametric methods.

The majority of methods described lower depends on a good face initialization. A popular

strategy, even for recent approaches (e.g., [AZCP13], [CWWS14], [CCTC09], [XDlT13] to

name just a few), is to first detect the face (i.e., using [VJ04]), and then fit a mean face shape

(where the shape is defined by the facial landmarks) to the detection window. However, for

extreme poses and some expressions, traditional face detectors (e.g., [VJ04]) may fail, or the

true shape of the face inside the detection window will differ significantly from the initial

shape, making a good initialization unlikely.

Part-based models [FGMR10], [YR11] can be used to address the initialization problem,

but learning an accurate part graph parameterization and inferring part labels from the graph

can be challenging. Recent works [YHZ+13], [ZR12] simplify the graph structure to a tree

and produce impressive results.

Though it is possible to build separate Active Appearance Models or Active Shape Models

to handle pose variation (view-based models), as carried out in [CWWT02], [RGP+99]

[ZA06] and [MBN13], respectively, the fact that they require very accurate initialization

decreases their effectiveness, especially on real-world images, where the simultaneous effects

of pose (yaw, pitch, and roll) and facial occlusions can decrease their accuracy. Thus, there

has been a recent increase in literature dealing with the automatic landmarking of non-

frontal faces using various unique approaches. Everingham et al. [ESZ06] used a generative

model of facial feature positions (modeled jointly using a mixture of Gaussian trees) and

a discriminative model of feature appearance (modeled using a variant of AdaBoost and

"Haar-like" image features [VJ01]) to localize a set of 9 facial landmarks.
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2.2 Parametric models

Traditionally facial landmarking has been carried using deformable template (parametric)

based models that can roughly be divided into two main categories: (a) Holistic Models

that use the holistic texture-based facial representations; and (b) Part Based Models that

use the local image patches around the landmark points. Notable examples of the first

category are Active Appearance Models (AAMs) [CET01a],[TAiMZP13] and 3D deformable

models [BV03]. The second category includes models such as Active Shape Models (ASMs)

[CTCG95], Constrained Local Models (CLM) [SLC11] and the tree-based pictorial structures

[ZR12]. We will not discuss here the 3D deformable models.

2.2.1 Active Shape Models

The Active Shape Model (ASM) was introduced by Cootes et al. [CTCG95] as a method

of fitting a set of local feature detectors to an object and simultaneously taking into account

global shape considerations. The allowable shape deformations are learnt from a manually

labelled training set to produce a linear shape model with the following form:

s = s̄+Psbs (2.1)

where s̄ is the mean shape, Ps is a set of orthogonal modes of variation and bs is a set

of shape parameters. An illustration of a statistical distribution of facial feature points is

represented in Figure 2.2. There are 600 shapes (smaller dot points in black) normalized by

Procrustes analysis. The larger dot points in red indicate the mean shape of all shapes.

Various shapes can be generated with Equation 2.2 by varying the vector parameter bs.

By keeping the elements of bs within limits (determined during model building) the generated

face shapes are lifelike. Conversely, given a new shape s̃, the parameter b that allows to

produce s̃ given a model shape s̄ can be calculated.

Cootes and Taylor [CT+04] describe an iterative algorithm that gives the bs and T that

minimizes

distance(s̃,T(s̄+Psbs)) (2.2)

where T is a similarity transform that maps the model space into the image space.

Many modifications to the classical ASM have been proposed over the years, such as

in [MN08], [SS09], that have mainly focused on developing better local texture models,

however they still remain susceptible to occlusions, the problem of local-minima, and are

very dependent on good initialization Other improvements focus on the local detectors. For



2.2 Parametric models 10

Figure 2.2 Statistical distribution of facial feature points. Figure taken from [WGTL14]

example, Boosted Regression Active Shape Models [CC07] use boosting to predict a new

location for each point, given the patch around the current position.

Among the methods focusing on a more robust global shape prior, Everingham et al.

[ESZ06] model the face configuration using pictorial structures [FH05], a hierarchical version

of which was used in [RBDlT+11]. Valstar et al. [VMBP10] combine SVM regression for

estimating the feature point’s location with conditional Markov random fields to keep the

estimates globally consistent. They also take advantage of facial feature points whose position

is less sensitive to facial expressions; they thus start by localizing such stable points first

and then find the additional points after a registration step. The whole process takes around

50 seconds per image. Very recently, Amberg and Vetter [AV11] proposed to run detectors

over the whole image and then find the optimal set of detections using Branch & Bound;

however, they only show results for high-quality images and need over one second to process

one image.

ASMs belong to a class of methods that can be broadly referred to as Constrained Local

Models (CLMs) [CC06], [CC08], [SLC11] (see 2.2.3).

2.2.2 Active Appearance Models

An AAM is a statistical model introduced by Cootes et al [CET01a] which describes shape

and texture variabilities of an object learned from a training set comprising different views of

the object.

Similar to ASMs, active appearance models are created from manually annotated data

with key landmarks points images and where the variations between the positions of points -

the shape x and the pattern of intensities or colors across an image patch - the texture g, are

learned by principal component analysis. Any example can be approximated using :
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s = s̄+Psbs a = ā+Paba (2.3)

where s̄ and ā are respectively the mean shape and texture, Ps,Pa are matrices describing

the modes of variation derived from the training set. A third PCA is then performed on a

concatenated shape and texture parameters b, to obtain a combined model vector c:

b = Qc (2.4)

From the combined appearance model vector c, a new instance of shape and texture can

be generated:

smodel= s̄+PsWsQsc amodel= ā+PaQac (2.5)

where Ws is a diagonal matrix of weights for each shape parameters and

Q =

(

Qs

Qa

)

(2.6)

Fig. 2.3 shows the effect of varying the first four parameters from c, showing changes in

identity, pose, and expression. Note the correlation between shape and intensity variation.

The goal of the active appearance model is to find the appearance parameters giving the

best match to an unseen image. Both ASMs and AAMs build shape models (also referred

Figure 2.3 Effect of varying first four facial appearance model parameters, c1− c4 by ±3
standard deviations from the mean. Taken from [CET01a].

to as Point Distribution Models (PDMs)), that model the shape of a typical face that is

represented by a set of constituent landmarks, and texture models of what the region enclosed

by these landmarks looks like. The difference between the two is that ASMs build local

texture models of what small 1D or 2D regions around each of landmarks look like, while

AAMs build global texture models of the entire convex hull bounded by the landmarks.
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The two main assumptions behind AAMs are that (1) for every test (unseen) image there

exists a test shape and set of texture weights for which the test shape can be warped onto the

reference frame and expressed as a linear combination of the shape-free training textures and

(2) the test shape can be written as a linear combination of the training shapes.

Defining a linear statistical model of texture that explains variations in identity, expres-

sions, pose and illumination, is a very challenging task, especially in the intensity domain.

Furthermore, the large variation in facial appearance makes it very difficult to perform

regression from texture differences to shape parameters. That’s why numerous extensions of

standard AAMs have been proposed to improve their fitting quality.

The majority of AAM extensions can loosely be categorized based on how they tackle

the problem, with the most common strategies being: (1) improvement of the actual fitting

procedure by changing the factors involved in the optimization (e.g. [GMB05], [CT06],

[MB04],[GMB06]); and (2) usage of more robust feature representations, e.g. to obtain

invariance with respect to occlusions [TAiMZP13], illumination [NSL11], or non-linear

shape deformations [HM09].

One of the main disadvantages of the algorithm, as for instance stated in [TAiMZP13],

[GMB05], [CT06],[Liu10], [PPB08], [SK09] is their weak generalization ability when

learned with only a few training examples that do not cover the complete range of possible

variations in the data. To overcome this problem Zhao et al. [ZSCC13] proposed computing

a separate AAM for each test face using k-nearest neighbor training faces (w.r.t. the test face)

rather than all training faces. Using k-NN exemplars is an important part of the approach of

[BJKK11] [ZBL13],[SLBW13].

To align unknown faces in unknown poses and illuminations, [SLGBG09] proposed to

use specific transformation of the active model texture in an oriented map, which changes the

AAM normalization process and to do the research in a set of different precomputed models

related to the most adapted AAM for an unknown face.

The classic AAM approach is computationally expensive and sensitive to the initializa-

tion due to the involved gradient descent based optimization[YHL+03, CILS12, XDlT13,

CWWS14].

Recently, Tzimiropoulos and Pantic [TP13] proposed new optimizations for fast and

accurate AAM fitting and demonstrated better fitting results on unseen images with a large

range of pose variation using a more unconstrained training set drawn from the Labeled Face

Parts in the Wild (LFPW) dataset [BJKK11].

Approaches which increase the expressiveness of an AAM are very rare. One example

is the Online Appearance Model [SK09], where the texture component is constantly being

updated via incremental PCA during model fitting to account for illumination changes.
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Similarly, Adaptive AAMs [Liu10] feature a generic and a subject-specific texture component,

where the latter is again being updated during fitting. However, both methods add knowledge

to the model only at fitting time and, both approaches update only the texture component,

which, for instance, excludes the possibility to add new facial expressions to existing AAMs.

Although the well known inverse compositional ICIA algorithm [MB04] has been crit-

icized for its inability to perform well under generic fitting scenarios, i.e. to fit images

of unseen identities, the algorithm is very popular, mainly because of its extremely low

computational complexity, and methodologies such as [PM08][ABV09], which can provide

near real-time fitting, has not received much attention. It has been demonstrated that ASMs

are more suited to the task of precise facial landmarking than AAMs [CET01a], [SS12],

[CWWT02], [CT+04], [BM04] [CET99], as AAMs are generative, global texture based

approaches and are more easily affected by variations in illumination and the presence of

occlusions.

Compared to ASMs, AAMs generalize poorly to unseen faces, however for tasks where

generalizing across people is not necessary and one has access to several training images of

an individual, AAMs work very well and are able to learn a holistic representation of the

face. Therefore active appearance models, are useful for many tasks like face inpainting,

detecting and removing occlusion, face identification, face animation.

2.2.3 Part based models

The part based models [ZR12] ,[CC08], [SLC11], [BJKK11], [CILS12] perform face align-

ment by maximizing a posterior probability of part locations given the image and then fuse

the probabilities of all the parts together enforced by a global shape model, e.g. enhanced

ASM [CC08], [SLC11] or pictorial structures [ZR12], to generate the final result.

The main advantages of part-based models [SLC11],[ZR12], [AZCP13] (i.e. models

which do not define a complete holistic texture model of the object) are a natural handling of

partial occlusions (since they only model certain parts of the object) and, most importantly,

the fact that they are optimized only with respect to shape (they do not define parametric

models of texture). Notable examples include Constrained Local Models (CLMs) [SLC11]

and the tree-based model of [ZR12] (which can be also used for object detection). More

recently, Asthana et al. [AZCP13] proposed a robust discriminative framework for fitting

CLMs which achieved state-of-the-art results in the problem of facial alignment "in the wild".



2.2 Parametric models 14

CLM

CLMs [CC08], build local models of texture variation around landmarks (sometimes referred

to as "patch experts" and allow landmarks to drift into the locations that best match training

data using these patch experts. This is similar to the AAM; however, the texture sampling

method is different. The shape is then regularized using the shape model to generate a

plausible set of final landmark locations. Unlike AAM which tries to approximate the raw

image pixels directly, the constrained local models [CC08] employ an extended appearance

model to generate the feature templates of the parts, which obtains improved robustness and

accuracy. The search algorithm is presented in Fig.2.4.

Figure 2.4 Constrained Local Model (CLM) search algorithm. Taken from [CC08]

The local appearance models are more robust to a range of challenges including occlu-

sion and global illumination changes, but CLMs still rely on parametric shape models for

regularization, which may not generalize well to a broad range of poses.

Saragih et al. [SLC11] proposed to use linear SVMs over power normalized image

patches to discriminate aligned from misaligned mesh vertex coordinates. Composing the

SVM classification score with a sigmoid function generates a likelihood map over the vertices

within a local search region around its current estimate. This allows a Bayesian treatment

of the alignment problem. Asthana et al. [AZCP13] developed a discriminative regression

based approach for the CLM framework that they referred to as Discriminative Response

Map Fitting (DRMF). DRMF represents the response maps around landmarks using a small

set of parameters and uses regression techniques to learn functions to obtain shape parameter

updates from response maps.
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Tree based models

In their recent seminal work, Zhu and Ramanan [ZR12] proposed an elegant framework

that built on the previously developed idea of using mixtures of Deformable Part Models

(DPMs) for object detection [FGMR10] to simultaneously detect faces, localize a dense set

of landmarks, and provide a course estimate of facial pose (yaw) in challenging images.

Their approach used a mixture of trees with a shared pool of parts V to model each facial

landmark. Global mixtures were used to capture changes in facial shapes across pose and the

tree-structured models were optimized quickly and effectively using dynamic programming.

The approach is quite effective at handling a wide range of yaw variation but does not account

for excessive in-plane rotation of faces or large occlusion levels.

In their tree structured part model each tree is written Tm = (Vm,Em) as a linearly-

parameterized, tree-structured pictorial structure, where m indicates a mixture and Vm ⊆V .

Taking an image I , and the pixel location of part i as li = (xi,yi) a configuration of parts

L = {li : i ∈V} is scored as:

S(I,L,m) = Appm(I,L)+Shapem(L)+αm (2.7)

Appm(I,L) = ∑
i∈Vm

wm
i ·φ(I, li) (2.8)

Shapem(L) = ∑
i j∈Em

am
i jdx2 +bm

i jdx+ cm
i jdy2 +dm

i jdy (2.9)

Equation 2.8 sums the appearance evidence for placing a template wm
i for part i, tuned

for mixture m, at location li . φ(I, li) represent the feature vector (e.g., HoG descriptor)

extracted from pixel location li in image I. Equation. 2.9 scores the mixture-specific spatial

arrangement of parts L, where dx = xi− x j and dy = yi− y j are the displacement of the

ith part relative to the jth part. Each term in the sum can be interpreted as a spring that

introduces spatial constraints between a pair of parts, where the parameters (a,b,c,d) specify

the rest location and rigidity of each spring. Finally, the last term αm is a scalar bias or

"prior" associated with viewpoint mixture m.

A comparison of the learned shape models with those trained generatively with maximum

likelihood is presented in Fig. 2.5. Tree based SVM captures much of the relevant elastic

deformation, but produces some unnatural deformations because it lacks loopy spatial

constraints.

Since pose is part of estimation, the algorithm practically works as a multiview algorithm.

In contrast to [VMBP10], [MVBP13] where local and global information are invoked in

succession, this algorithm is shape driven, and local and global information are merged
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right from beginning. This is implemented by considering several (30 to 60) local patches

that are connected as a tree, which collectively describe the landmark related region of the

face; in other words, the patch-based face graph models the ROI of the detected face and

incorporates its pose and landmark information. This approach is an adaptation of the idea of

tree-structured pictorial structures [FGMR10].

Recently, Ghiasi and Fowlkes [GF14] built on this work and proposed a hierarchical

deformable part model for face detection and landmark localization to explicitly model the

occlusion of parts and hence achieved more accurate results on challenging occluded images

in the wild.

Tree-structured pictorial structures have also been successfully applied to face recognition

by Everingham et al. [CWWS14], where the local appearance of each landmark is learned

by a variation of Adaboost algorithm with Haar-like features [VJ04]. Similarly, Uricar et

al. [UFH12], inspired by pictorial structures, jointly optimize appearance similarity and

deformation cost with a parameterized scoring function where the parameters are learned

from manually annotated instances using the structured output SVM classifier.

Figure 2.5 Mean shape and deformable models for tree based SVM (left) and AAM (right).
Taken from [ZR12]

2.3 Non parametric models

Despite the success of parametric shape models, the model flexibility (e.g., PCA dimension)

is often heuristically determined. Furthermore, using a fixed shape model in an iterative

alignment process (as most methods do) may also be suboptimal. This is the reason, recently

non parametric methods have emerged.
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2.3.1 Shape regression

Recently, a variety of approaches [CWWS14],[BAPD13],[YLYL13], [KJ14] that can be

broadly grouped under the category of shape regression based approaches have emerged.

Regression based methods can achieve accurate results at great speed and have thus become

quite popular. All these methods are improved variants of the original approach called

Cascaded Pose Regression (CPR) and introduced by Dollar et al. [DWP10].

CPR is formed by a cascade of T regressors R1..T that start from a raw initial shape guess

S0 and progressively refine estimation, outputting final shape estimation ST . Shape S is

represented as a series of P part locations Sp = [xp;yp], p∈ 1..P . At each iteration, regressors

Rt produce an update ∂S, which is then combined with previous iteration’s estimate St−1 to

form a new shape.

The training procedure for a CPR is shown in Alg. 1. During learning , each regressor

Rt is trained to attempt to minimize the difference between the true shape and the shape

estimate of the previous iteration St−1 using landmark-indexed features ht . For simplicity, we

use the notion of "landmark-indexed" feature instead of "pose indexed features" used by the

authors of [DWP10]. S0 is the single pose estimate that gives the lowest training error without

relying on any component regressors. The available features depend on the current shape

estimate and therefore change in every iteration of the algorithm; such features are known

as landmark-indexed features. The key to CPR lies on computing robust landmark-indexed

features and training regressors able to progressively reduce the estimation error at each

iteration.

Algorithm 1 Training for cascaded Pose Regression (taken from [DWP10])

Input: Data (Ii,Si) for i = 1..N
1: S0 = argminS ∑i d(S,Si)
2: S0

i = S0 for i = 1...N
3: for t = 1 to T do
4: xi = ht(St−1, Ii)
5: S̃ = S̄t−1

i ◦Si

6: Rt = argminR ∑i d(R(xi), S̃i)
7: St

i = St−1
i ◦Rt(xi)

8: εt = ∑i d(St
i,Si)/∑i d(St−1

i ,Si)
9: If εt ≥ 1 stop

10: end for
11: Output R = (R1, ...,RT )

After the training step, given an input shape S0, the regressor R(S0; I) is evaluated by

computing: St = St−1 ◦Sδ from t = 1...T and finally outputting ST . (see Algorithm 2)
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Algorithm 2 Evaluation of cascaded Pose Regression (taken from [DWP10])

Input: Image I, initial shape S0

1: for t = 1 to T do
2: x = ht(St−1, I) // compute features
3: Sδ = Rt(x) // evaluate regressor
4: St = St−1 ◦Sδ // update St

5: end for
6: Output ST

The algorithm uses 5 depth random fern regressors as regressors Rt and landmark-indexed

control point features. Each control point feature is computed as the difference of two image

pixels at predefined image locations. In Fig.2.6 the yellow crosses represent the coordinate

system defined by the current estimate of the pose of the object (which does not have to be

centered on the object). The colored arrows show control points defined relative to the pose

coordinates.

Each fern selects which 5 features to use from a large pool of F features via either a

random-step optimization or a correlation-based evaluation which is faster and improves

performance.

Figure 2.6 Landmark-indexed features. Left: Mice described by a 1-part pose model. Right:
3-part pose model of zebra fish. Taken from [DWP10]

Cao et al. [CWWS14] proposed a number of improvements over CPR. They point out

that local evidence is sufficiently strong only for a few prominent landmarks, but otherwise

most others are not salient enough and cannot be reliably characterized by their image

appearance, and therefore shape constraint is essential. Their method is regression based

where the shape constraint is realized in a nonparametric manner. Their nonparametric
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approach is based on the fact that the regressed shape is a linear combination of all training

shapes. An interesting aspect is that instead of using the regressors in parallel and fusing

their result as in [KSYY10] the authors use sequential regressors, where each one in the

sequence uses the image information and the shape estimated from the previous stage of

regression. Furthermore,the regressed shape is always constrained to reside in the linear

subspace constructed by all training shapes. This guarantees the plausibility of the shape as

well as global consistency.

The two-tier approach of Valstar et al. [VMBP10] uses in the first level surrounding image

information to predict landmark location via support vector regression (SVR), and in the

second level, the global shape information via a Markov Network. The regressor simplifies

the landmark search in contrast to exhaustive sliding-window search with a template window.

To explicitly deal with occluded faces and provide feedback on which landmarks were

occluded Burgos-Artizzu et al. [BAPD13] proposed the Robust Cascaded Pose Regression

(RCPR) algorithm. They incorporated occlusion directly into the learning stage, using facial

images that were both manually annotated and provided with occlusion labels, to improve

shape estimation.

Other regression based face alignment approaches are used in [CC07], [VMBP10],

[CILS12], [SG07] and [DWP10]. The distinctions among these methods mainly lie in the

employed learning algorithm (e.g. boosting [CC07], random forest [CILS12], or non-linear

least squares [XDlT13]) and the adopted features (e.g. Haar wavelets [CC07], random ferns

[DWP10], or SIFT [XDlT13]).

2.3.2 Other methods

Random forests and ferns

Dantone et al. [DGFVG12] propose pose-dependent landmark localization scheme that is

achieved by conditional random forests. While regression forests try to learn the probability

over the parameter space from all face images in the training set, conditional regression

forests learn instead several conditional probabilities over the parameter space, and thus

can deal with facial variations in appearance and shape. The head pose is quantized into

five segments of "left profile, left, front, right and right profile" faces and specific random

forests are trained. The local properties of a patch is described both by texture and by 2D

displacement vectors that are defined from the centroid of each patch to the remaining ones.

Specifically, texture is described by Gabor filter responses in addition to normalized gray

values in order to cope with illumination changes.
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Training of conditional random forests is very similar to random forests; the main

difference is that the probability of assigning a patch to a class is conditioned on the given

head pose. This approach is able to deliver located landmarks in a query image at real-time

speed.

Bayesian approach

Belhumeur et al. [BJKK11] use in an innovative manner a fully Bayesian approach to deduce

landmark positions from local evidences. An interesting aspect of their work is that these

evidences, that is, the local detector outputs are collected from a cohort of exemplars (sample

faces with annotated landmarks), which thus provide non-parametrically the global model

information.

In their recent work, [AiMZ] propose a Bayesian formulation of AAMs. To this end, they

use a simple probabilistic model for texture generation assuming both Gaussian noise and a

Gaussian prior over a latent texture space. The shape parameters are retrieved by formulating

a novel cost function obtained by marginalizing out the latent texture space. This results in

a fast implementation when compared to other simultaneous algorithms for fitting AAMs,

mainly due to the removal of the calculation of texture parameters.

Semi-supervised learning

Tong et al. [TLWT12] address the tedious and often imperfect task of manual landmark

labeling, and suggest a scheme to partly automate it. In their method, a negligible percentage

(e.g., 3%) of faces need to be hand labeled, while the rest of the faces are automatically

marked. This is realized by propagating the landmarking information of the few exemplars

to the whole set. The learning is based on the minimization of the pairwise pixel differences

resulting in two error terms: the penalty in one term controls the warping of each un-marked

image toward all other un-marked images, so that they become more alike irrespective of

the content. The penalty in the other term controls the warping of un-marked images toward

marked images, and it is here that the physical meaning of the content is imposed. The

warping function itself can be a global affine warp for the whole face, or a piecewise affine

warp to model a non-rigid transformation.

Multi-kernel SVM

Rapp et al. [RSBP11] introduce a multi-resolution framework where low resolution patches

carry the global information of the face and give a coarse but robust detection of the de-

sired landmark and high resolution patches, using local details, refine this location. This
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process is combined with a bootstrap process and a statistical validation, both improving

the system robustness. Combining independent point detection and prior knowledge on the

point distribution, the proposed detector is robust to variable lighting conditions and facial

expressions.

2.4 Data description and experimental design

2.4.1 Data description

To evaluate the performance of our algorithms, we have carried out matching experiments on

face images from the IMM [NLSS04], the CMU Multi-PIE [SBB03], MUG [APD10a] and

Cohn Kanade [LCK+10] databases.

Figure 2.7 Example images from IMM database

The IMM data set contains 240 images annotated with 58 landmarks of 40 subjects,all

without glasses, each of which having 6 different orientations and several facial expressions.

It includes images of frontal and 30◦ rotated faces , under neutral; happy and an arbitrary

expression taken under diffuse light or using a spot light added at the person’s left side (see

Fig. 2.7).

The MUG database consists of image sequences of 86 subjects performing frontal

facial expressions, out of which 401 images of 26 subjects are manually annotated with 80

landmarks. (see Fig. 2.8).

CMU Multi-PIE face database contains images of 337 people imaged across different

poses, under 19 different illumination conditions and while displaying a range of facial

expressions. Although images in Multi-PIE are recorded under different in-door controlled

lights, in our experiments, we only use images of Multi-PIE taken under frontal pose. We

select a subset of 40 individuals images with various facial expressions that are hand annotated

with 68 points. (see Fig. 2.9).
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Figure 2.8 Example images from MUG database

Figure 2.9 Example images from CMU Multi-PIE database

Figure 2.10 Example images from Cohn-Kanade dataset

The Cohn-Kanade database consists of expression sequences of 210 adults, annotated

with 68 points, starting from a neutral expression and ending in the peak of the facial
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expression. Participants were instructed by an experimenter to perform a series of 23 facial

displays, six of which were prototypical emotions including angry, disgust, fear, joy, sadness

and surprise. We use a subset of 115 subjects for our experiments. Only the first (neutral) and

final image (the prototypical expression) of each of the selected sequences are considered for

our training and testing. (see Fig. 2.10).

We have to highlight that all the algorithms have been trained and tested on the same data

and using the same features

2.4.2 Measures to evaluate fitting performance

We report the performance of AAMs using two very popular error measures. The first criteria

for success is the distance of the points computed using automated methods compared to

manually labelled ground truth. The distance metric is shown in Equation 2.10:

me =
1
ns

n

∑
i=1

di (2.10)

Here di are the Euclidean point-to-point errors for each individual feature location and s is

the ground truth inter-ocular distance between the left and right eye pupils. According to the

database, n is different as only the internal feature locations around the eyes, nose, brows and

mouth are used to compute the distance measure. The feature points on the edge of the face

are ignored for evaluation purposes.

The second measure is the point-to-point error defined as the Euclidean distance between

the estimated landmarks x and the hand labelled landmarks xhl . The greater the error is, the

worse the fitting is. The distance metric is shown in Equation 2.11.

Ept−pt(xhl,x) =
1
ns

n

∑
i=1

√

(

xi− xhl,i

)2
+
(

yi− yhl,i

)2
(2.11)

Here n is the number of keypoints that constitute the model and s the inter-ocular distance

between the left and right eye pupils of the mean shape calculated during model building. For

this error measure, we also produced the cumulative curve corresponding to the percentage

of test images for which the error was less than a specific value.

We have presented in this chapter a review of state of the art in face landmarking.

This review includes work on parametric and non parametric models for facial landmarks

localization. We have also presented the databases and the measures used for experimental

tests in order to evaluate the fitting performance of our algorithms. Since the purpose of
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the thesis is to study 2D polynomial modeling for image representations the next chapter is

dedicated to the presentation of 2D polynomial bases, 2D polynomial image approximation

and the strategies used for polynomial coefficient selection in the approximation process.



Chapter 3

Image analysis with polynomials

The purpose of this chapter is to study the 2D polynomial image representation and see its

impact in facial analysis applications. Encouraged by the results of the use of polynomial

bases to model vector fields and to analyze simple face movements we wanted to extend

the research to landmark/expression detection for avatar animation, person recognition and

emotion detection and see its impact in terms of robustness, accuracy and computational

cost.

Polynomial representations are similar to complete wavelet packet decompositions for a

defined scale. Such descriptions have been used for the characterization and representation

of handwritten mathematical symbols [CW07], the analysis of vowels and consonants in

spectral frequency for speech recognition [EAS11], or the generation of linear phase two-

dimensional FIR digital filter functions [CP12]. Their use in image representation has also

been demonstrated in [Sad96, EUL86], while recent articles have studied the use of the

discrete polynomial transforms for image coding [Mar06, KK09] or rotation invariant image

texture image retrieval [K+12]. In [AC12], Carré and Augereau proposed a multi-scale

hypercomplex 2D polynomial transform for color images based on quaternionic polynomials.

3.1 Complete bases
Let a Real Bivariate Polynomial of degree d be the function of x = (x1,x2) ∈ IR2 defined as:

P(x) = ∑
(d1,d2)∈[0;d]2

d1+d2≤d

ad1,d2x
d1
1 x

d2
2 (3.1)

where d1 ∈ IN+ and d2 ∈ IN+ are the degrees of variables x1, x2 and the {ad1,d2} ∈ IR are

the coefficients of the polynomials.
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Considering a finite set of pairs D = {(d1,d2)} ⊂ IN2 , we represent by lED the space of

all real bivariate polynomials such as ad1,d2 ≡ 0 if ((d1,d2) /∈ D) and by KD the subset of

real monomials:

KD =
{

Kd1,d2(x) = x
d1
1 x

d2
2

}

(d1,d2)∈D
(3.2)

Obviously KD satisfies the linear independence and spanning conditions and so, KD is a

basis of lED, the canonical basis. In image analysis, we look for bases with suitable properties

such as orthogonality or normality. So, to construct a discrete orthonormal real bivariate

polynomial finite basis we first have to consider the underlying discrete domain:

Ω =
{

x(u,v) =
(

x1,(u,v),x2,(u,v)
)}

(u,v)∈D1
(3.3)

where D1 represents the set of pairs associated to Ω. To discretize the image domain two

methods of collocation can be used, the first, the most classic is the uniform collocation

(equation 3.4) and the second is the Gauss-Tchebychev collocation (equation 3.5). The

Gauss-Tchebychev collocation corresponds to the zeros of Tchebyshev polynomials and is

optimal in the sense of Gauss quadrature.

xi(k) =−1+ k
2

N−1
(3.4)

xi(k) =−cos
2k+1

2N
π (3.5)

Starting from KD we intend to construct a new orthonormal basis by applying the Gram-

Schmidt process. That implies that we need some product and norm for real bivariate

functions defined on Ω. Taking into account the computational contingencies, given two real

bivariate functions, F and G, their discrete extended inner product is defined by:

⟨F |G⟩w = ∑
(u,v)∈D1

F
(

x(u,v)
)

G
(

x(u,v)
)

w
(

x(u,v)
)

(3.6)

with w a real positive function over Ω (Legendre, Tchebychev, Hermite, ...). Several weight-

ing functions are shown in Table 3.1.

Then, the actual construction process of an orthonormal basis:

BD1,w =
{

Bd1,d2

}

(d1,d2)∈D1
(3.7)
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Family Ω w(x1,x2)

Legendre [−1;1]2 1
Thecbychev 1 [−1;1]2 1√

(1−x1)
2(1−x2)

2

Tchebycev 2 [−1;1]2
√

(1− x1)
2 (1− x2)

2

Laguerre [0;∞]2 e−(x1+x2)

Hermite [−∞;∞]2 e
−
(

x2
1+x2

2
2

)

Table 3.1 Some weighting functions w to obtain different families of polynomials

is a recurrence upon (d1,d2):

Td1,d2 = Kd1,d2 − ∑
(l1,l2)≺(d1,d2)

⟨

Kd1,d2

⏐

⏐Bl1,l2

⟩

w
Bl1,l2 (3.8)

Bd1,d2(x) =
Td1,d2
⏐

⏐Td1,d2

⏐

⏐

w

(3.9)

where ≺ is the lexicographical order and ||w the norm induced by ⟨|⟩w .

Another method is to apply the three terms recurrence procedure (also called Stieljes

process in the discrete case where the integral is calculated by elementary transposition):

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

B−1, j(x1,x2) = 0

Bi,−1(x1,x2) = 0

B0,0(x1,x2) = 1

Bi+1, j(x1,x2) = (x1−λi+1, j)Bi, j(x1,x2)−µi+1, jBi−1, j(x1,x2)

Bi, j+1(x1,x2) = (x2−λi, j+1)Bi, j(x1,x2)−µi, j+1Bi, j−1(x1,x2)

(3.10)

where the coefficients λ and µ are given by:

λi+1, j =
⟨x1Bi, j|Bi, j ⟩
⟨Bi, j|Bi, j ⟩ λi, j+1 =

⟨x2Bi, j|Bi, j ⟩
⟨Bi, j|Bi, j ⟩

µi+1, j =
⟨Bi, j|Bi, j ⟩
⟨Bi−1, j|Bi−1, j ⟩ µi, j+1 =

⟨Bi, j|Bi, j ⟩
⟨Bi, j−1|Bi, j−1 ⟩

(3.11)

The resulting set of B polynomials verifies:

⟨

Bd1,d2

⏐

⏐Bl1,l2

⟩

w
=

{

0 if (d1,d2) ̸= (l1, l2)

1 if (d1,d2) = (l1, l2)
(3.12)
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BD1 ,w is effectively an orthonormal basis with respect to a weighting function w. A special

case is the complete basis where D1 represents exactly the set of pairs associated to Ω, that is

D1 = [0;N1]× [0;N2] (3.13)

A complete basis, related to the discrete extended inner product (3.6) is the orthonormal

basis whose domain is Ω defined by the family:

{

Bd1,d2(x)
}

d1=0..n1
d2=0..n2

(3.14)

The number of polynomials in the complete polynomial basis is given by (n1+1)× (n2+

1). A tabular representation of such a basis is given Figure 3.1. The first P0,0 polynomial

is in the top left corner. An evolution along lines of a same column varies the degree of

polynomials according to x1. An evolution along columns of a same line varies the degree

of polynomials according to x2. The shape of Hermite 3 complete basis polynomials is

presented in Figure 3.2.

Figure 3.1 Tabular representation of a two-dimensional basis level D1×D2.

Properties of the complete basis

1. The complete basis allows to obtain, for a given set of data an interpolating function

that is a first order polynomial (ie such as ∀x(u,v) ∈D,PI

(

x(u,v)
)

= I
(

x(u,v)
)

) if D′=D;

2. Furthermore the projections on Bi, j can be considered as a multiscale finite differences

operator ∂ i
1∂

j
2 .

3.2 Polynomial decomposition

If some of a texture characteristic parameters are obtained directly from the intensity levels

of the pixels of the image, other important features can be known only through a filtering of
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Figure 3.2 Polynomials of a Hermite 3 complete basis

the image. To setup an efficient strategy in image analysis, we need a joint spatial/frequency

representation.

In this section, we show that real discrete orthonormal polynomials can be considered as

a discrete multiscale decomposition, which allows us to represent texture information in a

compact and accurate way.

We describe now the construction of the multiresolution piecewise polynomial decompo-

sition.

Considering a function U defined on a domain Ω of size n1× n2 and a basis of size

h1×h2 , the decomposition process is expressed, at a step L, according to:

1. partition of the discrete domain ΩL with a number of ∆ sublattices , of sizes hL
1×hL

2 ;

2. for each subinterval ∆, approximation of the corresponding restriction UL in a complete

basis constructed on ∆. The polynomials coefficients are defined as:

bi, j(U
L) =

⟨

UL
⏐

⏐Bi, j

⟩

w
(3.15)

3. the reordering or orthogonal polynomial coefficients b into hL
1×hL

2 functions UL+1
i, j , on

domains of
[

nL+1
1 ≡ nL

1

hL
1

]

×
[

nL+1
2 ≡ nL

2

hL
2

]

(3.16)

sizes to provide image subbands in a multiresolution decomposition-like structure.

This approach is equivalent to a filter bank: (i) the decomposition is obtained by filtering

the image using the "polynomial" filters and (ii) the corresponding magnitude frequency

responses of "polynomial" filters have additional low-pass and band-pass characteristics.
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This technique provides a degree of flexibility which relates to the choice of resolution

factors being potentially independent between different levels of decomposition. With respect

to classic time-frequency representations, such as wavelets, polynomial basis decompositions

do not necessarily use a dyadic partition and are therefore more adaptable. It should be noted

that the coefficients of local polynomials can not be presented as a linear combination of

upper level coefficients (as for classical wavelet transform).

To compute the polynomial coefficients we will use a regular grid subdivision that will be

projected in the base. This technique provides a zero error approximation within acceptable

computing times. This technique was successfully used in JPEG image compression format

where the Discrete Cosine Transform is applied to blocks of 8 × 8 pixels.

Two examples of a first level decomposition on the same image are shown in Figure 3.3

with a decomposition using a 3× 3 Chebychev complete basis (left) and a 5× 4 Hermite

complete basis(right).

Figure 3.3 Two examples of a first level decomposition with Chebychev 3x3 and Hermite
5x4 complete basis

The computation of the polynomial projections pi, j(U
s) =

⟨

U s
⏐

⏐Bi, j

⟩

w
can be realized

in form of convolution products with filters given by the values of the base polynomials

measured at the collocation points.

For example using a Legendre complete basis of a 2×2 support, and a uniform collocation

weighting function we obtain the next four filters:

f0,0 =

(

0.5 0.5

0.5 0.5

)

f0,1 =

(

−0.5 −0.5

0.5 0.5

)

f1,0 =

(

−0.5 0.5

−0.5 0.5

)

f1,1 =

(

0.5 −0.5

−0.5 0.5

) (3.17)
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Using this basis, we can observe on the left figure of Figure 3.4 a representation similar

to Haar wavelets. The adaptability and therefore originality of the polynomial decomposition

can be observed on the right images of Figure 3.4 and 3.3.

Figure 3.4 Example of third level 2× 2 Legendre decomposition and second level 3× 3
Tchebycev polynomial decomposition

3.3 Polynomial approximation

We have seen in the last section that by projecting an image in the complete basis we obtain a

set of polynomial coefficients. We can reverse this operation and reconstruct the image using

:

Ũ(x1,x2) = ∑
(d1,d2)∈[0;d]

d1+d2≤d

bd1,d2(U)Bd1,d2(x1,x2) (3.18)

where bd1,d2 are calculated using Equation 3.15.

During image reconstruction after after a multi-scale decomposition performed with

complete bases, a perfect approximation is obtained by taking the entire set of calculated

polynomial projection coefficients. Therefore, there is the possibility to use image approxima-

tions limiting the number of coefficients (and hence the number of polynomials) during the

reconstruction phase. Different strategies can be used to select the polynomial coefficients:

• Brute force restriction to certain set of coefficients, for example those corresponding to

polynomials whose degree is less than a threshold
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• Restriction based on "energies", for example by using the basis normality to compare

energy quantities that are associated to each domain coefficients keeping only a fixed

number of coefficients or those that satisfy a certain condition (energy)

We present, in figure 3.5 the perfect approximation of an image using complete bases

with a grid of 2× 2 pixels. We therefore use a base containing 4 polynomials which are

P0,0,P0,1,P1,0,P1,1. The test image is presented in figure 3.5(a) and in 3.5 (b) the result of the

approximation. It can be noted that the approximation error is equal to zero. This result is

identical regardless of the grid used (and thus the number of polynomials).

(a) (b)

Figure 3.5 Approximation of Lena image (512 × 512 pixels) using complete basis on a
regular 2×2 grid.(a) Original Lena image; (b) Image reconstruction

3.3.1 Experimental results on image approximations

We decide to compare the polynomial approximation with Haar wavelet transform, used

by Wolstenhome ant Taylor [WT99] to build a wavelet appearance model, CDF (Cohen-

Daubechies-Faveau) 9-7 wavelets used in JPEG2000 codec for lossy compression and

integrated by [SFC04] in the AAM framework and SVD (singular value decomposition), a

compression method having the property of energy compaction and the ability to adapt to the

local statistical variations of an image. SVD is closely related to PCA, the method used in

AAM to describe variations in shape and texture.
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Haar wavelets The Haar wavelet is one of the simplest and oldest wavelets. It’s mother

wavelet function ψ(t) and its scaling function φ(t) can be described as:

ψ(t) =

⎧

⎪

⎨

⎪

⎩

1, 0≤ t ≤ 1
2

−1, 1
2 ≤ t ≤ 1

0, otherwise

φ(t) =

{

1, 0≤ t ≤ 1

0, otherwise

Any filter can be approximated uniformly by linear combinations of Haar wavelets.

CDF 9/7 wavelets The CDF 9/7 wavelet is an especially effective biorthogonal wavelet,

used by the FBI for fingerprint compression and selected for the JPEG2000 standard. The

reason CDF 9/7 wavelets are used in practice is because they were designed to come very

close to being energy preserving. The low pass filters associated with the CDF 9/7 wavelets

have 9 coefficients in the analysis, and 7 coefficients to synthesize. This wavelet has a great

number of null moments for a relatively short support. The scaling functions and wavelets of

the CDF 9/7 wavelets are presented in the Figure 3.6.

Figure 3.6 CDF 9/7 scaling functions and wavelets

SVD Singular value decomposition is a linear algebra method for identifying and ordering

the dimensions along which data points exhibit the most variation. The SVD values represent

the energy of an image. Indeed, the total energy of an image I can be represented by :

∥I∥= trace
[

IT × I
]

=
m

∑
i=1

n

∑
j=1

I2(i, j) =
n

∑
i=1

σ2
i
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Image compression of a grayscale image is conducted by forcing the low singular values to

zero. Keeping the k,(k ≤ n) first singular values an image I can be approximated using:

∥Ik∥= trace
[

IT
k × I

]

=
k

∑
i=1

σ2
i

We conduct our tests on an image of the sixth person of the database MUG [APD10b]

performing the neutral expression and Lena image.

The quality of images is evaluated using PSNR("Peak Signal to Noise Ratio") measure:

PSNR = 20 · log10(
MAXI√

MSE
) (3.19)

where MAXI is the maximum possible pixel value of the image. When the pixels are

represented using 8 bits per sample, this is equal to 255.

In our tests we construct a Hermite 16× 16 basis. The decomposition obtained after

projection on this basis is similar to a 4-levels decomposition using CDF 9/7 and Haar

wavelets.

First we show the outcome of the comparison of the reconstruction using complete basis,

Haar and CDF 9/7 wavelets using a brute force restriction on the coefficients, and keeping

the ones that correspond to a multi-resolution level. In this case, if the coefficients after a

transform are denoted by :

coe f f s = [a u1... un] where un = [hn vn dn]

where a,h,v,d denote approximation, horizontal, vertical and diagonal detail coefficients

respectively. After truncation, the selected coefficients will correspond to : coe f f s =

[a u1... urestriction]

The comparison results are presented in Figures 3.7, 3.8 and 3.9. It can be observed that

using this type of restriction, our method slightly outperforms the Haar wavelet transform ,

and is similar to the CDF 9/7 wavelet transform. Using the low level coefficients the best

results are obtained with the CDF 9/7 wavelet, Haar wavelets and complete basis having the

same PSNR. By adding detail coefficients, complete bases outperform Haar wavelets, and

for the face image, even the CDF 9/7 wavelet transform.

In Figure 3.10, we present the results based on the energy selection of the coefficients.

After the decomposition, we keep the best coefficients that correspond to a fixed amount of

energy stored in each block. We do not remove any coefficients from the level zero decompo-

sition (corresponding to the low frequency values of the signal). After this step we compute

the PSNR between the original image and the reconstructed one. In the results presented



3.3 Polynomial approximation 35

Figure 3.7 PSNR evolution using the brute force restrictions on coefficients for Lena and
MUG face image

Figure 3.8 Reconstruction using 0 and 1 level coefficients after a 4 level decomposition.
From left to right: complete basis, Haar an CDF 9/7 wavelets

below, we use a SVD on the entire image, the approximated image being reconstructed

keeping the vectors that correspond to a fixed amount of energy.

It can be seen that using the energy based restriction, polynomial approximation outper-

forms the other methods. The SVD process gives the worse results. This is obtained because

when using other transform we can select more precisely the coefficients to keep, while using

SVD we have to truncate the obtained matrix.

The results keeping 1% and 15% of the coefficients are presented in Figures 3.11 and

3.12. Following the results presented above, and since polynomial base decompositions do

not necessarily use a dyadic partition like wavelets do and are therefore more adaptable,

we can conclude that image approximations with complete basis are a good tool for image

approximation.
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Figure 3.9 Reconstruction using 0-2 levels coefficients after a 4 level decomposition. From
left to right: complete basis, Haar an CDF 9/7 wavelets

Figure 3.10 PSNR evolution using a fixed amount of energy coefficients for Lena and MUG
face image

3.3.2 Discussion

In this chapter we have presented the complete bases that are the basic tool used during the

thesis. We showed how real discrete orthonormal polynomials can be considered as a discrete

multiscale decomposition allowing the representation of texture information in a compact

and accurate way and presented an application of the polynomial approximation for image

compression.

By comparing our method to 3 different approaches - Singular Value decomposition,

Haar and CDF 9/7 wavelets we have demonstrated the capacity of polynomial coefficients to

represent an image in a sparse, compact and in a flexible manner (due to sizes of the basis).
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Figure 3.11 Reconstruction using 1 percent of the coefficients. From left to right: SVD,
complete basis, Haar an CDF 9/7 wavelets

Figure 3.12 Reconstruction using 15 percents of the coefficients.From left to right: SVD,
complete basis, Haar an CDF 9/7 wavelets
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Chapter 4

Face texture analysis with polynomials

In this part, we propose a new polynomial texture representation method for deformable

models. While many texture representations have been proposed over the years to improve

the accuracy and reliability of computer vision applications such as object tracking or image

alignment, most descriptors are usually unable to both provide precise multi-scale and

multi-orientation analysis and handle the redundancy problem effectively.

Because model fitting parameters within AAMs are estimated by minimizing the sum of

squared differences of texture values between observations and approximations, accuracy

and robustness will rely heavily on choices regarding texture representation. While original

AAMs use raw image intensities, and despite the advantages of PCA-based global structure

analysis, the AAM fitting is still an open issue (e.g. it is very sensitive to illumination and

pose changes), as useful information on local variations, such as their scale or orientation, is

either neglected or not extracted well enough by PCA.

We will demonstrate the integration of coefficients obtained from polynomial projections

both into the fitting procedure of discriminative and generative approaches, and their ability

to improve robustness against pose and facial expression changes.

4.1 More on Active Appearance Models

We presented briefly the AAM algorithm in the last chapter. We will see now this algorithm

more thoroughly. An Active Appearance Model (AAM) is a statistical model of shape and

texture (appearance) learned from a training set comprising different views of an object,

combined with a deformation algorithm to match new images. It was first introduced by

Cootes et al. in 1998 [ETC98] and has been widely used in face tracking and medical imaging

applications ever since. There are two basic components in alignment using an AAM: data

modeling and model fitting.
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4.1.1 Data modelling

Given a set of training images, data modeling is the procedure of training the AAM, which is

essentially two distinct linear subspaces modeling object shape and appearance respectively.

The variations of geometry and texture are modeled using linear modes of deformation,

computed from a Principal Component Analysis (PCA) on the training data. Advantageously,

separate models are built for the object shape (or geometry) and its appearance (or texture).

For face images, the shape is defined as the set of v 2D coordinates of the landmarks used

for model building s = [x1,y1,x2,y2, ...,xv,yv] . This set of landmarks can be triangulated, for

instance using Delaunay triangulation, to provide a mesh (see Figure 4.1). As illustrated on

Figure 4.1, taken from [MB04], the shape model learnt from the annotated training images

consists of a base shape s0 and a set of linear modes of deformation si of this base shape.

Thus, the model can represent any linear combination of the basis shapes, of the form

s = s0 +
n

∑
i=1

risi (4.1)

where r = [r1,r2, ...,rn] are the shape parameters. By design, the first four shape basis

vectors can represent global scale, rotation and translation. Together with other basis vectors,

a mapping function from the model coordinate system to the coordinates in the image

observation is defined as W(x;r), where x is a pixel coordinate defined by the mean shape s0.

Any point x in s0 must lie within one of the triangles in the mesh associated to s0. The images

by W of the vertices of the triangles are known from the expression of s. The restriction of W

to this triangle is defined to be the affine transform computed from the images of its vertices.

Figure 4.1 Deformable model of shape in an AAM. Taken, from [MB04]

The annotation for each training face image provides a training mesh. In order to

compute the shape model, the training shapes defined by the set of annotated landmarks are

first registered to a common position, scale and orientation using Global Procrustes Analysis.

s0 is defined as the mean of these registered shapes, the main modes of deformation si are

computed using a principal component analysis.

The appearance in an AAM consists of the set of pixel intensities within the convex hull

of the base shape s0. Similarly to the shape, and as illustrated on Figure 4.2, the appearance
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Figure 4.2 Deformable model of appearance in an AAM. Taken, from [MB04]

model is defined by a base appearance A0 and a set of linear modes of deformation Ai of this

appearance. Thus, the model can represent any appearance of the form :

A(x,λ ) = A0(x)+
m

∑
i=1

λiAi(x) (4.2)

where A0 is the mean appearance, Ai is the ith appearance basis and λ = [λ1,λ2, ...,λm] are

the appearance parameters. It is worth emphasizing at this point that the appearance part of

the model is defined within the base shape s0, and therefore independent of the shape.

The AAM model instance with shape parameters r and appearance parameters λ is

created by warping the appearance A from the base mesh s0 to the model shape s using a

piecewise affine warp denoted W(x;r).

The sequence of operations needed to generate an instance of the model from a set of

parameters (ri,λi) are as follows:

1. Generate the shape as s = s0 +∑λisi

2. Generate the appearance within s0 as A = A0 +∑λiAi

3. Compute the warp W(x;ri) that maps s0 to s

4. Warp the appearance A from the base shape s0 to the model shape s using W.

4.1.2 Model fitting

Model fitting refers to estimating the best deformation parameters that allow to fit a trained

model to an input image.

In order to localize landmarks on new images the model learnt from the training set is fitted

to the images. In the case of AAM, fitting stands for computing the shape and appearance

model parameters that best "explain" the input image. More precisely, a hypothesized choice

of model parameters defines a model instance, whose geometry delimits the face region
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within the input image, and whose appearance provides a reconstructed face texture in s0.

The optimal parameters are those that minimize the squared error between the A and the

warping onto s0 of the object region in the input image.

∑
x
[I (W(x;p))−A0 (x)]

2 (4.3)

There are two major research lines for modeling this function.

The first one is using a standard gradient descent algorithm, iteratively updating the

current estimate, until convergence. This line of research is referred as generative fitting.

Because straightforward implementations of gradient descent are computationally expensive

and therefore very slow, most approaches to generative AAM fitting either assume some parts

of the model are fixed, or reformulate the problem so that they become fixed. The approach

taken in [MB04] is to start from a coarse initialization of the mesh and apply an iterative

optimization scheme to minimize, over the set of model parameters (ri,λi), the reconstruction

error between the appearance model instance (defined by the λi) and the observed set of

pixels within the shape model instance, warped back to the base shape s0 according to the

values of the shape parameters (r). In their project-out inverse compositional method the

key idea is that the role of the appearance template and the input image is switched when

computing parameter increment ∆r and because it decouples shape from appearance by

projecting out appearance variation. This enables several time-consuming steps of parameter

estimation to be pre-computed and performed outside of the iteration loop and therefore their

approach is often considered the standard choice for fitting person-specific AAMs.

The second line of research for fitting AAMs is through learning the error function via

regression. This type of technique is fast but approximate and is referred as discriminative

fitting. In order to take into account the dependency to texture differences, without having

to recompute it for every new image, the original AAM formulation in [CET01b] proposes

to learn the relationship between the spatial pattern in the error image and the way the

parameters should be changed, in other words, to learn a gradient matrix from a set of

training examples. This technique is fast but approximate, because the error function is linear

and independent of the current model parameters. A notable improvement is the work of

[SG07] in which a nonlinear regressor is learned via boosting. Other discriminative methods

for fitting AAMs have been proposed in [Liu07] and [WLD08].
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4.2 Texture representation in discriminative AAMs

In this section, we propose two different schemes to replace the original AAM texture

representation model by approximating image structures with polynomial projections on an

orthonormal basis.

4.2.1 Background on texture representations

In recent years, several alternative texture representation methods have been proposed to

improve the accuracy and reliability of the matching. As an example, Cootes and Taylor

[CT01] use a combination of gradient, absolute edge and a cornerness. Kittipanya-Ngam

and Cootes [KnC06] show that representations of the structure of the image in a region

may improve the fitting process of AAMs, and a half-wave rectified gradient is presented.

According to Stegmann and Larsen [SL03], a mix of features (e.g. intensities and contours)

gives better results than any individual representation, while Su and Tao [STLG09] propose

a representation that combines Gabor wavelets with Local Binary Patterns (LBP).

While statistical learning methods such as Principal Component Analysis (PCA) perform

very well in global structure relationship studies, it has also been demonstrated that computer

vision models can greatly benefit from local analysis and hierarchical representations of

image structures obtained after image convolution with a set of filter banks. This type of

processing is motivated by two widely accepted assumptions about human vision: (i) human

vision is mostly sensitive to scene reflectance and mostly insensitive to the illumination

conditions, and (ii) human vision responds to local changes in contrast rather than to global

brightness levels. A natural way to encode local contrast is through the employment of a

bank of filters that encode local intensity differences at different orientations and scales. As

an example, the use of wavelets can enhance the accuracy and robustness of AAM models

[HFT+03, SFC04, DAVM04, STLG09].

Gabor wavelets have also been used successfully by Davoine et al. within AAMs

[DAVM04] to build a hierarchical model based on a set of filter responses. Because they

provide an efficient framework for multi-scale and multi-orientation structural analysis, they

are usually robust against illumination and pose changes, and are widely used in applications

such as facial expression recognition. However, their non-orthogonal decomposition makes

them unable to handle the redundancy problem effectively. For this reason, we propose to

study and use a more compact and adaptive representation for deformable models, namely

the 2D polynomial transform. Later in this section, we will show how we intend to use it.
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4.2.2 Proposed approach

Our motivation to use a texture polynomial representation in the AAM framework is that

orthogonal polynomials have some properties related to the human visual system [Bla74],

including a multi-scale / multi-resolution representation of the information. We search a

deformable model that could capture a structure with an insignificant number of parameters,

and therefore we propose to integrate a polynomial representation for its coding qualities,

namely because of the compact representation of the information in the polynomial model.

The proposed method is built on two major components: the adaptation of AAM to

incorporate texture features and the generation of texture features using the polynomial bases.

In equation (4.2) we replace the texture model A by AP, a vector of approximation

coefficients obtained through polynomial projections on aligned textures. Two different

modes are available for the computation of coefficients of AP:

• calculated on texture patches sampled around key landmarks (PAAM)

• retrieved from a multi-resolution polynomial decomposition of the full aligned texture.

(FT-PAAM)

In the first case (PAAM) the texture sampling method is different from the one used

for appearance calculation described previously. A training patch is sampled around each

landmark, and projected on a polynomial basis. The size and the collocation function used

for basis generation will be discussed later. The texture patches obtained by polynomial

projections from a given training image are then concatenated to form a single grey value

vector. Then the set of grey scale training vectors and normalised shape co-ordinates are used

to construct linear models, as seen in the model building step of the AAM Algorithm. This

type of texture representation will reduce the model basis dimensions to avoid over fitting.

As for the FT-PAAM approach, depending of the size of the complete base, we will

obtain a defined number of sublattices, and the texture will be considered as the matrix of

concatenated polynomial coefficients calculated on the subdomains. As the projections on

polynomials of a complete base can be considered as a multi-scale finite difference related to

differentials ∂ i
1∂

j
2 the coefficients obtained after the projection in the polynomial base could

be used directly for computations requiring gradients.

4.2.3 Experimental results

For these experiments, 20 different AAM models have been trained: 5 on 30 images out of

5 randomly selected subjects from the IMM database, 5 on 30 frontal images of 5 subjects
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MultiPie MUG IMM CK

Cootes et al. 2.248±0.740 1.735±0.413 1.972±0.512 1.611±0.754
ASM 2.461±0.655 1.738±0.422 3.356±2.142 1.921±0.649
ICIA 1.958±1.080 1.946±1.041 1.984±0.977 1.411±1.091

PAAM (ours) 2.261±0.709 1.838±0.374 1.904±0.504 1.630±0.788
FT-PAAM (ours) 1.887±0.604 1.480±0.377 1.925±0.822 1.601±1.260

Table 4.1 Mean Error pixel/landmark

with various emotions from the MUG database, 5 on 30 images of 30 different subjects

performing various facial expressions from the Cohn Kanade database and the other 5 on 30

images of 5 subjects with different facial expressions from the MultiPie database.

The training and fitting databases that we use are very challenging as we have multi-user

/multi expression and multi-user/multi pose variations. For each database, the 5 computed

models are the original Cootes et al. ASM [CTCG95] and AAM model [CET01a], Matthews-

Baker’s Inverse Compositional Image Alignment (ICIA) model [MB04], our polynomial

projection-based model (PAAM) and the first level polynomial decomposition coefficients of

the full aligned texture (FT-PAAM).

Cootes et al. ICIA PAAM (ours) FT-PAAM(ours)
1.94031 2.13562 1.58384 1.58442

Figure 4.3 Face matching example on IMM database

The polynomial approximation coefficients used for the PAAM representation were

obtained via projections on a 15×15 complete Hermite basis - a reasonable size for modeling

local changes in texture. Approximation coefficients are calculated on texture patches around

key landmarks, and deformation parameters are estimated through a Cootes-like Taylor

approximation. As for FT-PAAM we use a 3x3 Laguerre complete basis sufficient for

gradient computations. For both approaches we used Chebychev collocation method.
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Results were calculated when the initialized shape was randomly perturbed from ground-

truth. Table 4.1 shows the mean error and the standard deviation computed with the five

different methods. As can be observed, our two proposed methods give very accurate results.

Cootes et al. ICIA PAAM (ours) FT-PAAM(ours)
1.4142 1.51793 1.11305 1.20436

Figure 4.4 Face matching example on MUG database

A noticeable difference between the results obtained with our two methods is that the

PAAM scheme performs better when there is a pose variation. During tests we did notice

significant improvements of our method over both Cootes et al. and ICIA methods on profile

poses (see Fig. 4.3, the eyes location ). In this approach, the AAM model is built on texture

patches around the keypoints , so it can give more accurate results than the one calculated

on the entire set of pixels of the AAM model, in particular in the case of the variation of

expression or facial pose. As we use spatially localized texture models around the points of

interest, our method must provide strength to the local modifications of texture.

Cootes et al. ICIA PAAM (ours) FT-PAAM(ours)
2.83959 2.88878 1.42299 1.49749

Figure 4.5 Face matching example on Cohn Kanade database
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As can be seen in Fig.4.5 and Fig. 4.6 presenting the matching results on a subject of the

CohnKanade and MultiPie database, the FT-PAAM locates the landmarks more accurately

than do the other methods, especially for the points on the chin, that are quite difficult to

fit and that are usually not considered in error metric calculations. This is explained by the

fact that we have a hierarchical representation of the information when processing texture

coefficients via polynomial projections.

Cootes et al. ICIA PAAM (ours) FT-PAAM(ours)
1.57715 1.50364 1.30466 1.22499

Figure 4.6 Face matching example on CMU MultiPie database

4.3 Polynomial compressed appearance models

Active Appearance Models establish dense correspondences by modeling the variations

between shape and pixels intensities and is an generative model that is able to synthesize a

very close approximation to any image of the target object. Using raw image intensities to

model each pixel of an object and despite the advantages of PCA-based analysis, this problem

is computationally expensive for high resolution 2D images considering the computational

requirements and the large data storage. Therefore, to reduce the computational time we

propose to use the approximation coefficients of polynomial projections in place of the

raw intensities. This operation will introduce an additional time requirement by cause of

transformation of the image into a new representation. However [LSD+07] showed that the

computational burden of model fitting can be considerably reduced if the transformation

leads to sparse data.

In this part we to extend the work of Wolstenhome and Stegmann [SFC04] applied to

face alignment where wavelet coefficient subsets were modelled rather than pixel intensities.

Yet, deviating from their approach we will include the approximation coefficients in the

regression framework.
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The proposed method is built on two major components: the adaptation of AAM to

incorporate texture features and therefore the generation of this features using the polynomial

basis and the regression algorithm used for model fitting.

4.3.1 Compressed polynomial texture model

We have seen that the polynomial representation is able to encode the local texture information

of an object by projections on the different polynomials of the basis. As a result, the

polynomial representation is capable of characterizing the statistical properties of object

appearance in multiple scales and directions (by adding an angle in the basis generation,

similar to gabor wavelets ). This section introduces a notation for the polynomial compression

and describes how it can be integrated in the AAM framework .

First let a n-level (the overall degree of the polynomials in the basis ) polynomial transform

be denoted by :

P(t) = pi, j(t) = p̂ =
[

B̂T
0,0 B̂T

0,1 . . . B̂T
d1,d2

]T
(4.4)

where B̂i, j denote the polynomial coefficients of the texture t projected in the basis.

Compression is now obtained by a truncation of the polynomial coefficients:

C(p̂) =Cp = p =
[

BT
0,0 BT

0,1 . . . BT
d1,d2

]T
(4.5)

where C is a modified identity matrix, with rows corresponding to truncated coefficients

removed. Notice that for simplicity reasons we do not use a special notation for compressed

coefficients. However we used the p̂ symbol for the uncompressed transform.

The appearance model is built on the truncated polynomial coefficients constituting the

texture. The texture PCA on polynomial coefficients is given by :

p = p+
m

∑
i=1

λpbp⇔

⎡

⎢

⎢

⎢

⎢

⎣

B0,0

B0,1
...

Bd1,d2

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

B0,0

B0,1
...

Bd1,d2

⎤

⎥

⎥

⎥

⎥

⎦

+
m

∑
i=1

⎡

⎢

⎢

⎢

⎢

⎣

λB0,0

λB0,1
...

λBd1,d2

⎤

⎥

⎥

⎥

⎥

⎦

bp (4.6)

where λp is the eigenvectors of the polynomial coefficient covariance matrix. Rearranging

this into low and high frequency terms we get:

B0,0 = B0,0 +λB0,0bp (4.7)
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the coarse approximation, and

{Bd1,d2 = Bd1,d2 +λBd1,d2
bp}d1=1..n1

d2=1..n2

(4.8)

the details. Hence the texture is multi-scale and can be used for analysis/synthesis at any given

scale (provided by the polynomial degree). Truncating a substantial number of polynomial

coefficients and compared to the multi-scale AAM this method can give a major reduction in

storage requirements.

4.3.2 Iterative regression model using polynomial coefficients

In this section we introduce an algorithm for the training and evaluation procedures using a

cascaded polynomial regression model that is inspired by Nonlinear Discriminative Fitting

[SG07]. Regression-based methods directly learn a mapping function from facial image

appearance to facial feature points.

Saragih and Goecke used a nonlinear update model for AAM fitting that uses multimodal

weak learners, based on Haar-like features, which allow efficient online evaluation using the

integral image. To avoid overlearning, the boosting procedure is embedded into an iterative

framework with an intermediate resampling step. This process affords well regularised

update models through limiting the ensemble size and indirectly increasing the sample size.

In this section we present the CDAAM, a framework for incorporating polynomial

compression into a regression framework, using global shape and combined parameters of

shapes and appearance. Polynomial approximation coefficients are used to compress the

data; then PCA is used to reduce the dimensionality of the shape and appearance, and those

projections are concatenated, similar to traditional AAM’s.

In our approach, in addition to shape and appearance parameters we use a 2D similarity

transformation which parameters qp contains the rotation, translation, and scale parameters.

Given an input pose S0 we first estimate the shape parameters ie the global shape transform

qp and the combined shape and appearance parameters cp. Then we train a regressor

R = (R1; ..;RT ), such that, given an input pose S0 and its parameters qp0 and cp0 , the

pose parameters at iteration t are evaluated by computing: (qp,t ,cp,t) = (qp,t−1,cp,t−1)+

(∂qp,t ,∂cp,t) where (∂gq,t ,∂cp,t) are computed via Lasso Regression.

Training

The training procedure for a CDAAM (compressed polynomial regression AAM) is shown

in Alg. 3.
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Algorithm 3 Training of cascaded polynomial regression

Input: N images with landmarks annotations
1: Build a statistical model of joined shape and compressed texture using polynomial

projections
2: for t = 1 to T do
3:

{

δqp,t ,δcp,t

}S

j=1 Sample perturbations
4: fi = p(I ◦W (qp,t ,cp,t)) // compute compressed features using last fitted shape, where

W is a warping function
5: if t>1 then
6: Estimate (δqp,t ,δcp,t) using Rt−1 and add them to the current parameters
7: end if
8: (q̃p,t , c̃p,t) = (qp,t ,cp,t)− (δqp,t ,δcp,t)
9: Rt = argminR ∑i d(R(fi),(q̃p,t , c̃p,t))

10: end for
11: Output R = (R1, ...,RT )

Each component regressor Rt is trained to attempt to minimize the difference between

the true pose parameters and the pose parameters computed previously. In each iteration t

we begin to generate small displacements (δqp,t ,δcp,t) for each parameter from the known

optimal value and learn a regressor Rt such that (∂qt
p,t ,∂ct

p,t) = Rt(δqp,t ,δcp,t) minimizes

the following loss:

min
N

∑
i=1
|(qT

p,t ,c
T
p,t)− (q0

p,t ,c
0
p,t)| (4.9)

where (qT
p,t ,c

T
p,t) are the current shape parameters and (q0

p,t ,c
0
p,t) the true pose parameters.

In this work we rely on lasso regression, described below.

Lasso regression

The Lasso is a linear model that estimates sparse coefficients and in which the target value is

expected to be a linear combination of the input variables. Given a set of input measurements

x1,x2...xp and an outcome measurement y, the predicted value ŷ is estimated via:

ŷ(w,x) = w0 +w1x1 + ...+wpxp (4.10)

We decided to use it due to its tendency to prefer solutions with fewer parameter values,

effectively reducing the number of variables upon which the given solution is dependent.

Given an outcome vector y, a matrix X of predictor variables, and a tuning parameter λ ≥ 0,

the lasso estimate can be defined as:
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argmin
ω

1
2
∥y−Xω∥2

2 +λ ∥ω∥1 (4.11)

The lasso estimate thus solves the minimization of the least-squares penalty with λ ||w||1
added, where λ is a constant and ||w||1 is the ℓ1-norm of the parameter vector and a coordinate

descent as the algorithm to fit the coefficients.

Fitting

After the training step, given an input shape s0, we project it to parameters and the regres-

sor R(S0; I) is evaluated by computing: (δgp,t ,δcp,t) = Rt(x) from t = 1...T and finally

outputting ST . (see Algorithm 4)

Algorithm 4 Evaluation of cascaded polynomial regression

Input: Image I, initial shape S0 and the set of regressors R = (R1, ...,RT )
1: Project shape to compressed parameters
2: for t = 1 to T do
3: fi = p(I ◦W (qp,t ,cp,t)) // compute compressed features
4: (δqp,t ,δcp,t) = Rt(fi) // evaluate regressor
5: (qp,t ,cp,t) = (qp,t−1,cp,t−1)+(δqp,t ,δcp,t) // update (qp,t ,cp,t) parameters
6: Back project parameters to the compressed shape and texture to compute St

7: end for
8: return fitted shape

4.3.3 Experimental results

Evaluation of the compression rate

We start by testing the compression approach on the MUG database using a cascade of 5

Lasso regressors Rt . First, two bases are evaluated - a Chebychev 3× 3 basis using the

Chebychev function for calculating the collocation points and the Hermite 10× 10 basis

using the uniform fonction for collocation points. For each method, six CDAAM model

are computed using 7 levels of compression similar to the method used by Stegmann, by

keeping only the strongest energy polynomial coefficients. The models are evaluated on all

the images from the MUG database, and boxplot results of the error measured as percentage

of interocular distance are presented in the figures below.

It can be observed that the results are very stable using both bases. Similar to the

conclusions of Stegmann we can observe that the medium error in the standard AAM is
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Figure 4.7 Boxplots of alignment error vs compression ratio using Hermite 3× 3 and
Chebychev 10×10 bases. Wiskers are 1.5 IQR at maximum

worse than all the median values of the compressed 3×3 Hermite basis. Indeed, thanks to

the noise suppression during compression the fitting accuracy is improved.

Figures Fig. 4.8 and Fig. 4.9 show the synthesized images computed with the parameters

of the compressed AAM.

Figure 4.8 Real image

Comparison with the approach using raw pixel information

As we have seen using polynomial bases for compression in AAM improves the quality of

the fitting and allows to synthesize a face close to the original.

Tables Tab. 4.2 and Tab. 4.3 show the comparative fitting results of the CDAAM model

trained using 5% of data on all the four databases. The CDAAM method using a compression

rate of 1:20 outperforms the results of the one using the raw pixel information on Cohn

Kanade, Multi Pie and MUG database. When using a compression rate of 1:1, due to the

multiscale representation the CDAAM method provides better alignment accuracy, results in

accordance with the one presented in the last section.
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Figure 4.9 Face synthesis using n percents of the coefficients.From left to right compression
ratio corresponding to : 40,30,20,15,10,5. On the first line the images are synthesised using
Chebychev 3x3 basis and the second one Hermite 10x10 basis.

CK IMM MP MUG

RAW DAAM 0.169 0.109 0.108 0.093
CDAAM 1:1 0.058 0.092 0.083 0.070
CDAAM 1:20 0.147 0.110 0.103 0.077

Table 4.2 Mean error on face interior points

It can also be observed that the error calculated on face interior points, see Fig. 4.2, is

consistent with the one measured on the entire set of points.

Figure 4.10 show the comparison of the CDAAM method at 1:1 ratio (using the entire

set of polynomial coefficients) with the raw regression AAM. It can be clearly observed

that changing the appearance with polynomial coefficients enhance the alignment precision.

For example, on MUG database we have 25 percent of points which error is less than 5

percents of interocular distance with the approach using raw intensities, 31 percent with

a 1:20 polynomial compression rate and 34 percent of points with the method using 1:1

compression rate.

CK IMM MP MUG

RAW DAAM 0.183±0.0770 0.132±0.044 0.121±0.050 0.106±0.043
CDAAM 1:1 0.066±0.025 0.113±0.033 0.098±0.034 0.081±0.026
CDAAM 1:20 0.162±0.064 0.135±0.050 0.114±0.043 0.087±0.029

Table 4.3 Mean ± standard deviation using RAW DAAM and CDAAM methods
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Figure 4.10 Cumulative errors on key points for the various datasets

Comparison with Haar and CDF 9/7 compression method

Similar to the approach in [SFC04] we evaluate the behaviour of Haar wavelet an CDF 9/7

using the CDAAM algorithm. Both of these wavelets were tested using compression ratios

in the range 1:5 - 1:40 and compared to the standard raw regression AAM and with the two

polynomial basis. The expereiments use three level of wavelet decomposition. Figure 4.11

shows the boxplots of alignment error versus the compression ratio using CDF 9/7 wavelets

and Haar wavelets. Unlike [SFC04] conclusions, by using the regression algorithm the

average median of CDF wavelets are worse than those of Haar wavelets for all compression

rates.

Figure 4.12 shows the average alignment errors with their standard deviation versus the

compression ratio using the different approaches. We observe that CDF 9/7 wavelets present

the lowest alignment accuracy, yet presenting better results than the raw intensities approach.

By using 10×10 polynomial basis and Haar wavelets the alignment results are very close,

however for small compression rates the Haar wavelets present better results and for high

compression rates the method utilizing polynomial coefficients should be preferred.
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Figure 4.11 Boxplots of alignment error vs compression ratio using CDF 9/7 wavelets and
Haar wavelets . Wiskers are 1.5 IQR at maximum

4.4 Discussion and conclusions

In the first part of this chapter, we have proposed two new approaches for texture repre-

sentation in deformable models, using the AAM framework as an example. Coefficients

resulting from polynomial projections of pixel values on a complete basis have been used

for image approximation, and compared to global analysis of raw pixel intensities one can

usually find in AAM texture models. Experimental results show that our approaches perform

very well with face alignment algorithms and depending on the chosen method we obtain

robustness to pose changes or facial expression changes. A hybrid approach combining the

two proposed methods could be considered to improve the fitting accuracy when the database

have multi-pose/multi- expression variations. Because they provide a compact, hierarchical

representation of image structures, polynomial decompositions are an efficient alternative to

global or redundant texture representations such as Principal Component Analysis on pixel

intensities or Gabor wavelets. Moreover, polynomials in the complete basis are orthogonal,

which allows a fast computation of texture parameters though direct scalar products within

the image.

In the second part we have investigated how an AAM framework can be augmented

with polynomial compression to reduce model complexity and have introduced a cascade

regression algorithm based on compressed polynomial coefficients. We have carried out

experiments using different polynomial bases at seven compression ratios. It was found that

using this method alignment accuracy is very stable while increasing compression ratio and

keeping a small percentage of data allows to obtain very good alignment results.
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Figure 4.12 Average alignment errors vs compresion ratio. Error bars are on standard error.

We have also compared our approach with Haar wavelet and CDF 9/7 wavelets. Although

our method performs as well as the other approaches in terms of alignment accuracy for small

compression rates, for high compression rates the method using polynomial coefficients

performed consistently better. In addition, we have seen in the Polynomial approximation

part 3.3.1 that the polynomial method provided best synthesis quality and is close to Haar

wavelets in terms of computational complexity.

In conclusion, we have validated the accuracy and robustness of the polynomial texture

apperance on a series of images of the four databases. The results indicate that the polynomial

method presents the highly desirable properties of sparsity and compactness that grant good

results for alignment.



Chapter 5

Gradient descent approximation using

polynomial bases

In the last chapter we have proposed an enhancement for the texture appearance in the AAM

framework. However we have seen that the multiresolutional polynomial decomposition

approach is equivalent to a filter bank , therefore polynomial coefficients can be used in a

gradient descent algorithm.

In this chapter we will take an interest in the generative fitting, review in details the

inverse compositional approach and see how we can use polynomials to replace analytically

the calculation of gradients.

We showed previously that the ICIA adjustment method for AAMs was introduced

in 2004 by Matthews and Baker in [MB04]. They propose to modify the Lucas-Kanade

algorithm to make it effective and applicable to AAMs by suggesting an inverse compositional

warp update instead of the standard additive update and present an analytical derivation for a

gradient descent search.

5.1 Inverse compositional algorithms using polynomials for

template matching

Based on forward additive image alignment method, inverse compositional image alignment

method is just reversing the roles of the trained model template image A(x) and the input

image I(W(W(x;δ r);r)), which results in :

∑
x
[A(W(x,δr))− I (W(x,r))]2 (5.1)
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After taking the 1-order Taylor series expansion in terms of δr at δr = 0 we have:

∑
x

[

A(W(x,0))+ ∂A(W(x,δr))
∂ (W(x,δr))

∂ (W(x,δr))
∂δr |δr→0(δr−0) − I (W(x,r))

]2

= ∑
x

[

A(x)−∇A∂W
∂r δr− I (W(x,r))

]2 (5.2)

where ∇A is the gradient image for the template image.

We then minimize 5.2 by computing its partial derivative in terms of δ r and find the next

solution :

δr = H [I (W(x,r))−A(x)] (5.3)

with

H =

(

(

∇A
∂W
∂r

)T (

∇A
∂W
∂r

)

)−1(

∇A
∂W
∂r

)T

(5.4)

We remind the inverse compositional algorithm as presented by Matthews and Baker in

Alg 5 :

Algorithm 5 The Inverse Compositional Algorithm
Pre-compute:

(3) Evaluate the gradient ∇A of the template A(x)
(4) Evaluate the Jacobian ∂W

∂r at (x;0)

(5) Compute the steepest descent images ∇A∂W
∂r

(6) Compute the Hessian matrix
Iterate:

(1) Warp I with W(x;r) to compute I (W(x;r))
(2) Compute the error image I (W(x;r))−A(x)

(7) Compute ∑
x

[

∇A∂W
∂r

]T

[I (W(x;r))−A(x)]

(8) Compute ∆r
(9) Update the warp W(x;r)←W(x;r)◦W( x;∆r)−1

until ∥∆r∥ ≤ ε

The function W(x;r) is the parametrized set of allowed warps where r= (r1...rn)
T is a

vector of parameters. It takes pixel x in the coordinate frame of a template and maps it to the

sub pixel location W(x;r) in the coordinate frame of the image I. As we want to track an

image patch moving in 3D we will consider the set of affine warps :

W(x;r) =

⎛

⎜

⎝

1+ r1 r2 r3

r4 1+ r5 r6

0 0 1

⎞

⎟

⎠

⎛

⎜

⎝

x

y

1

⎞

⎟

⎠
(5.5)
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In equation 5.5, r3 and r6 corresponds to translation, r1 and r5 to scaling and r2 and r4 to

shear. If we compute the Jacobian and Hessian of the warp we obtain :

∂W
∂r

=

⎛

⎜

⎝

x y 1 0 0 0

0 0 0 x y 1

0 0 0 0 0 0

⎞

⎟

⎠
and

∂ 2W
∂r2 = 0 (5.6)

We will first show now how to use polynomials in the algorithm and what are its ad-

vantages. The use of the polynomial basis is similar to the convolution with a filter bank

that allows to extract the different frequency components of a signal and offers the possibil-

ity to use multiresolution piecewise polynomial decomposition. Our representation is non

redundant - if the signal is represented with N samples, the "wavelet-like" polynomial repre-

sentation contains at maximum N coefficients. Moreover, this representation is invertible: a

perfect reconstruction of the original signal from the coefficients.

Since we can consider the projection on a polynomial basis Bi, j as a multi-scale finite

differences operator ∂ i
1∂

j
2 we propose to replace the gradients calculated in the algorithm by

the ones obtained by polynomial projections. We will use a Legendre 3×3 polynomial basis

whose coefficients are given in Table5.1

B00 0.333 0.333 0.333 B01 -0.408 -0.408 -0.408 B02 0.235 0.235 0.235
0.333 0.333 0.333 0 0 0 -0.471 -0.471 -0.471
0.333 0.333 0.333 0.408 0.408 0.408 0.235 0.235 0.235

B10 -0.408 0 0.408 B11 0.5 0 -0.5 B12 -0.288 0 0.288
-0.408 0 0.408 0 0 0 0.577 0 -0.577
-0.408 0 0.408 -0.5 0 0.5 -0.288 0 0.288

B20 0.235 -0.471 0.235 B21 -0.288 0.577 -0.288 B22 0.166 -0.333 0.166
0.235 -0.471 0.235 0 0 0 -0.333 0.666 -0.333
0.235 -0.471 0.235 -0.288 0.577 -0.288 0.166 -0.333 0.166

Table 5.1 Polynomial coefficients for a 3×3 Legendre basis

The projections obtained by the bases are undersampled compared to the initial image, we

therefore start our algorithm by projecting the template and the input image in the polynomial

basis. Projecting these two images in the B00 polynomial is similar to a filtering operation

with a mean filter followed by a subsampling. It can be noticed that the polynomials B01

and B10 present strong similarities with Gx and Gy gradient filters. With respect to standard

representations, the basis filters are reversed spatially on the horizontal axis, so the results

acquired following a projection on the B01 are multiplied by -1.

We include the polynomial coefficients in the inverse compositional algorithm by replac-

ing the computation of part 3 of the Alg 5 with projections of polynomial basis, and those
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of parts 5,6,1,2 and 7 respectively (due to undersampling) and the obtained results are very

close to those received without polynomials (see Table 5.2) with execution times divided

roughly by 10. Therefore we deduce that projections on polynomials bases B01 and B10 are a

good alternative to conventional filters for calculating the gradients of an image.

We present the results of a face template alignment on 4 images of two subjects from the

MUG database (see Figure 5.1). Each input image is deformed twice with random values

Input image Template Input image Template

Figure 5.1 Images used for template alignement

and then we use the inverse compositional algorithm to align the face region to the template

image on witch we applied some blurring and noise. The input regions for each case, the

noisy templates and the results from alignment are presented in the figure 5.2.

Image1 Image2 Image3 Image4

PSNR Time PSNR Time PSNR Time PSNR Time
ICIA 17.719 16.232 17.703 15.994 17.301 15.559 17.158 18.722

ICIA Polynomes 17.695 2.397 17.695 2.100 17.279 2.047 17.048 2.162

Table 5.2 Comparative results for face template matching.

It can be observed in tab 5.2 that PSNR values are rather low. This is explained by the

added noise and blur to the input image. Using the polynomial coefficients is very efficient,

as our method is 7x times faster, obtaining very close PSNR values.

From Table 5.1 it can be observed that using the last algorithm; after projection on

polynomial basis there are still a part of unused data (since we use only the B00, B10 ans

B01 polynomial coefficients ). Hence we implement the inverse compositional algorithm

using Newton’s algorithm, which uses a second order Taylor expansion and therefore uses

second order derivatives of the image and template (already calculated with projections on a

polynomial basis) in the gradient descent approximation.
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Deformed input images, in white the input regions used for alignment with the template

Template images

Resulting images, aligned on the templates

Figure 5.2 Images used for template alignement

In the Newton algorithm, the Hessian of the cost function differs from the Hessian of the

Gauss Newton algorithm (see 5.4) by: ∂ 2G
∂r2 =

(

[

∂W
∂r

]T [∂ 2A

∂x2

][

∂W
∂r

]

+∇A

[

∂ 2W
∂r2

]

)

[A(x)− I (W(x;r))]+
[

∇A
∂W
∂r

]T [

∇A
∂W
∂r

]

(5.7)

This approximation is more complex as it requires the second order derivatives of the warp

and the template and can not be precomputed as it depends on the parameters r through

I (W(x;r)). However it is straightforward to replace the second order derivatives of the

template with the results obtained from the polynomial projections. As in the Gauss Newton

approach using polynomials, the calculations will be performed on undersampled images

hence they’ll be faster.

The results obtained using Newton method are presented in Figure 5.3. We can observe

that the PSNR results are slightly better, with greater execution times.
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Image1 Image2 Image3 Image4

PSNR Time PSNR Time PSNR Time PSNR Time
ICIA 17.731 15.460 17.742 22.155 17.318 23.648 17.165 31.308

ICIA Polynomes 17.696 3.565 17.697 3.593 17.297 3.556 17.048 3.692

Table 5.3 Comparative results for face template matching.

5.2 Polynomial inverse compositional algorithm for AAMs

We presented in the last section how the inverse compositional image alignment algorithm

minimizes the error between an input image I(x) and a constant template image A(x).

We reformulate the inverse compositional algorithm to entertain fitting across multiple

polynomial filter responses. The error functions can be written as,

∑
x

[

{⟨

I (W(x;r))
⏐

⏐Bi, j

⟩

w

}D

i=1
−
{⟨

A(W(x;∆r))
⏐

⏐Bi, j

⟩

w

}D

i=1

]2
(5.8)

Where Bi, j is the i, j polynomial of the basis of size D, and {.}D
i=1 represents the concatenation

operation i.e. {xi}D
i=1 =

[

xT
1 ...x

T
D

]T

The error in equation 5.8 can equivalently be written as:

∑
x

[

{⟨

[I (W(x;r))−A(W(x;∆r))]
⏐

⏐Bi, j

⟩

w

}D

i=1

]2
(5.9)

From this equation we see that the polynomial representation can be directly used in the

Lucas Kanade framework. A key element of the error function in equation 5.8 is that solving

this function using Lucas Kanade strategy requires the linearisation of:

⟨

A(W(x;∆r))
⏐

⏐Bi, j

⟩

≈
⟨

A(W(x;0))
⏐

⏐Bi, j

⟩

+

⟨

∂A(W(x;∆r))
⏐

⏐Bi, j

⟩

∂r
∆r (5.10)

where
⟨∂A(W(x;∆r))|Bi, j ⟩

∂r ∆r = ⟨∂A(W(x;∆r))|Bi, j ⟩
∂W(x;∆r)

∂W(x;∆r)
∂∆r ∆r =

=
⟨∂A(W(x;0))|Bi, j ⟩

∂W(x;0)
∂W(x;r)

∂r ∆r =
⟨

∇A
⏐

⏐Bi, j

⟩ ∂W(x;r)
∂r ∆r

such that ∂W(x;0)
∂r is the Jacobian of the warp function. We evaluate the Jacobian of the

template image with respect to the x and y coordinates directly by re-projecting the template

polynomial representation on the polynomials of degree 1 calculated in a Hermite basis

B=
{

Bi, j(x)
}

i=0..d1
j=0..d2

:
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⟨

∇A
⏐

⏐Bi, j

⟩

=
⟨(⟨

A
⏐

⏐B1,0
⟩

,
⟨

A
⏐

⏐B0,1
⟩)⏐

⏐Bi, j

⟩

(5.11)

5.2.1 First order Taylor approximation using complete polynomial ba-

sis

The Active Polynomial Models proposed in this work are an extention of the AAM revisited

and are designed to use the same shape and motion model as the ones used by AAMs but

have a different appearance model and cost function (see Eq. 5.12 ) to fit this model.

Given a generic AAM and a video frame I at time t, we propose an approach that uses

the following cost function to perform the face model fitting:

∑
x

∑
i, j

[⟨

I
⏐

⏐Bi, j

⟩

ω
(W(x;r))−

⟨

A
⏐

⏐Bi, j

⟩

ω
(W(x;∆r))

]2
(5.12)

The first order Taylor approximation for the inverse compositional algorithm is known as

the Gauss Newton approximation, and since we use polynomials in the calculations we will

call our method Gauss Newton Polynomial ICIA.

Using the polynomial bases instead of minimizing the sum of squares differences between

a constant template A0(x) and an example image I(x) with respect to the warp parameters r

and q (global transform parameters) we will minimize the difference between an example

image and the corresponding template calculated by projections into the complete polynomial

basis.

Therefore we will use the next algorithm:
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Algorithm 6 Polynomial Inverse Compositional Algorithm with Appearance Variation and
Global Shape Transform
Pre-compute:

(i) Generate and project the appearance into the complete basis. The appearance part of the

model will be calculated using Equation 4.6

(3) Evaluate the gradient ∇Ap of the template Ap(x) by projections on the 1st an 2nd

polynomials of the basis using equation 5.13

(4) Evaluate the Jacobians ∂N
∂q and ∂W

∂r at (x;0) where ∂N
∂q is the global shape transform

(5) Compute the modified steepest descent images using Equations 5.15 and 5.14

(6) Compute the Hessian matrix

Iterate:

(ii) Project the image I in the complete basis→ Ip

(1) Warp Ip with W(x;r) followed by N(x;q) to compute Ip (N(W(x;r) ;q))

(2) Compute the error image Ip (N(W(x;r) ;q))−Ap(x)

(7) Compute ∑x∈s0
SDi(x)

[

I (N(W(x;r) ;q))−Ap(x)
]

for i = 1, ...,n+4

(8) Compute(∆q,∆r) by multiplying the resulting vector by the inverse Hessian

(9) Update (N◦W)(x;q,r)← (N◦W)(x;q,r)◦ (N◦W)(x;∆q,∆r)−1

The gradient ∇Ap of the template Ap is evaluated by projections on the first order

polynomials of the basis B1,0 and B0,1:

∇Ap =
(

∑
⟨

Ap
⏐

⏐B1,0
⟩

w
,∑
⟨

Ap
⏐

⏐B0,1
⟩

w

)

where Ap =

⎡

⎢

⎢

⎢

⎢

⎣

B0,0

B0,1
...

Bd1,d2

⎤

⎥

⎥

⎥

⎥

⎦

(5.13)

With respect to the equations of Matthews and Baker the modified steepest descent

images that are used in our approach are computed using:

SD j,r(x) = ∇Āp
∂N
∂q j
−

r

∑
i=1

(

∑
x∈s

λp(x)∇Āp
∂N
∂q j

)

(5.14)

for each of the similarity parameters and :

SD j+4,r(x) = ∇Āp
∂W
∂r j
−

r

∑
i=1

(

∑
x∈s

λp(x)∇Āp
∂W
∂r j

)

(5.15)
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for r where j = 1..n. It can be observed that we use in these equation the appearance

polynomial parameters λp joined with polynomial gradients.

Alignment results

We present the comparison result of face alignment using the algorithm presented by

Matthews and Baker and its polynomial version in Table 5.4.

CK IMM MP MUG

Gauss-Newton ICIA 0.175±0.139 0.418±0.160 0.160±0.193 0.148±0.094
Gauss Newton Polynomial ICIA 0.165±0.110 0.194 ±0.058 0.245±0.081 0.123 ±0.054

Table 5.4 Mean ± standard deviation using ICIA and Polynomial ICIA methods

The results show that the method using polynomials for the gradient descent and for

texture representation performs better than the original algorithm for Cohn Kanade, IMM for

which the error is greatly improved and for MUG database. For Cohn Kanade, MultiPie and

MUG databases, where the faces are not having rotations, the original algorithm shows good

results, and for IMM, where each face has different orientations the algorithms performs

poorly. By using polynomials, we can obtain good results even for images presenting

rotations.

In Table 5.5 are presented the alignment results calculating the error on face interior

points. They are consistent with the one presented before, as we obtain smaller errors using

polynomials for all databases except Multi Pie.

CK IMM MP MUG

Gauss-Newton ICIA 0.152 0.328 0.139 0.139
Gauss Newton Polynomial ICIA 0.155 0.153 0.224 0.114

Table 5.5 Mean error on face interior points

5.2.2 Second order Taylor approximation using bases

Matthews and Baker do not recommend to use the full Newton Hessian method because

this approach uses a sophisticated estimate of the Hessian that is presumed noiseless. They

also state that the increased noise in estimating the second order derivatives of the template

outweights the increased sophistication in the algorithm.



5.2 Polynomial inverse compositional algorithm for AAMs 66

Projections in the polynomial basis include convolution with the weighting functions

used for basis construction. Using the Hermite basis we will convolve the input image with

a gaussian filter therefore we will limit the noise in the gradient and second derivatives.

Therefore we propose the Newton approach using projections on the first and second order

basis polynomials. The Newton inverse compositional AAM fitting algorithm including

global shape transform is summarized in Alg 7.

Algorithm 7 Newton Inverse Compositional Algorithm with Global Shape Transform (mod-
ified version of [BM02])
Pre-compute:

(i) Generate and project the appearance into the complete basis. The appearance part of the

model will be calculated using Equation 4.6

(3) Evaluate the gradient ∇Ap and the second derivatives ∂ 2Ap

∂x2 of the template r(Ap)

(4) Evaluate the Jacobians ∂N
∂q , ∂W

∂r and the Hessians ∂ 2W
∂r2 , ∂ 2N

∂q2 at (x;0)

(5) Compute ∇Ap
∂W
∂r ,

[

∇Ap
∂W
∂Ap

]T [

∇Ap
∂W
∂r

]

,
[

∂W
∂r

]T [∂ 2Ap

∂x2

][

∂W
∂r

]

+∇Ap
∂ 2W
∂r2

and ∇Ap
∂N
∂q ,
[

∇Ap
∂N
∂q

]T [

∇Ap
∂N
∂q

]

,
[

∂N
∂q

]T [∂ 2Ap

∂x2

][

∂N
∂q

]

+∇Ap
∂ 2N
∂q2

Iterate:

(ii) Project the image I in the complete basis→ Ip

(1) Warp Ip with W(x;r) followed by N(x;q) to compute Ip (N(W(x;r) ;q))

(2) Compute the error image Ip (N(W(x;r) ;q))−Ap(x)

(6) Compute the Hessian matrix ∑x
∂ 2G
∂r2 using Equation 5.16

(7) Compute
[

∑x
∂G
∂r

]

p

T

= ∑x∈s0
SDi(x)

[

Ip (N(W(x;r) ;q))−Ap(x)
]

for

i = 1, ...,n+4

(8) Compute(∆q,∆r) by multiplying the resulting vector by the inverse Hessian

(9) Update (N◦W)(x;q,r)← (N◦W)(x;q,r)◦ (N◦W)(x;∆q,∆r)−1

The Hessian matrix can be calculated using :

∂ 2G
∂r2 =

(

[

∂J
∂r

]T [∂ 2Āp

∂x2

][

∂J
∂r

]

+∇Āp
∂ 2J
∂r2

)

(

Ip (N(W(x;r) ;q))− Āp(x)
)

+

[

∇Āp
∂J
∂r

]T [

∇Āp
∂J
∂r

]

(5.16)

where ∂J
∂r =

[

∂N
∂q
∂W
∂r

]

and Ap =

⎡

⎢

⎢

⎢

⎢

⎣

B0,0

B0,1
...

Bd1,d2

⎤

⎥

⎥

⎥

⎥

⎦



5.2 Polynomial inverse compositional algorithm for AAMs 67

In our experiments the second order derivatives are calculated via projections on polyno-

mial basis and ∂ 2J
∂r2 = 0

Alignment experiments

We compared our method with the Newton approach on each database. After training two

models per database - one using the Newton approach and one using the Newton polynomial

approach on 30 images , we fit the resulting models on the resting images. The average error

and the standard deviation are displayed in Table 5.6.

CK IMM MP MUG

Newton 0.080±0.030 0.159±0.066 0.108±0.053 0.086±0.033
Newton Polynomial ICIA 0.060±0.018 0.109±0.043 0.081±0.026 0.065±0.017

Table 5.6 Mean ± standard deviation using Newton and Polynomial Newton methods

First, it can be observed that the average errors using the Newton method are significantly

lower than the ones using the Gauss Newton method (see Table 5.4). Second, as previously,

by using polynomial projections we obtain better alignment results for all databases. The next

table Tab.5.7 shows that results on interior points are consistent with the one measured on the

entire set of points, as we obtain smaller errors using polynomials. We can also conclude that

among the four databases face interior points are most precisely calculated on Cohn Kanade

and MUG database.

CK IMM MP MUG

Newton ICIA 0.070 0.120 0.091 0.072
Newton Polynomial ICIA 0.049 0.077 0.065 0.051

Table 5.7 Mean error on face interior points

Figure 5.3 presents the cumulative percentage of points which error is lower than a certain

percentage of the inter ocular distance. It can be observed that the best results are obtained for

Cohn Kanade database, followed by the MUG and Multi Pie datasets using our polynomial

method. The gain provided by the use of polynomials is substantial for all datasets and

overcomes the small extra time spent for polynomial projections.
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Figure 5.3 Cumulative errors on key points for the various datasets using the Newton (dotted
line) and polynomial Newton (solid line) algorithms

5.3 Discussion and conclusion

We have presented in this chapter two extensions of the inverse compositional image align-

ment algorithm using polynomial projections. To our knowledge we propose the first unified

solution dealing with gradient descent and texture representation into a single consistent

model.

The algorithms have been evaluated on challenging datasets, including Multi-PIE align-

ment accuracy that focuses on accessing the performance with combined identity, pose,

expression and illumination variation.

We believe that the framework is a solid basis to explore more complex facial models,

which we suspect may even further improve alignment quality in the images/videos in the

facial alignment context.



Overview on polynomial AAMs

In this chapter we have proposed to use polynomial projection coefficients in different parts

of the Active Appearance algorithm.

First, we replaced the texture representation model by approximating image structures

with polynomial projections into an orthonormal basis. Two different models were proposed

and compared to the raw image intensity representations. Experimental results show that the

two approaches perform well with face alignment algorithms and according to the chosen

method, robustness to pose changes or facial expression changes is acquired.

Next, we have proposed an enhanced appearance model where subsets of polynomial

coefficients were used in order to obtain different compression ratios. In addition to a

detailed review of the method and a discussion of their integration in a regression framework

we compared our polynomial basis with HAAR and CDF 9/7 wavelets. It was shown

also that using a polynomial representation at compression ratio 1:1, due to the multiscale

representation of the data, alignment results are more accurate than a conventional AAM,

confirming the results of the first part of the chapter. We have also shown that at higher

compression ratios our method presents a decreased complexity and a better alignment

accuracy.

Then we showed that the polynomial coefficients can be used in the gradient descent

algorithm and reformulated the inverse compositional algorithm to entertain fitting across

multiple polynomial filter responses. We demonstrated that coefficients obtained from

polynomial projections on the polynomials of degree 1 can be used in the Gauss Newton

descent algorithm and the ones obtained on the first and second order polynomials in the

Newton approach.

The figure 5.4 presents a summary comparison of all presented methods in this chapter on

MUG database. It can be observed that for frontal images, presenting facial expressions the

best method is the one using Newton polynomial gradient algorithm as we have more than

80% of the points detected with this method which error is less than 10 % of the inter ocular

distance calculated on the database. This method is followed by the one using regression and

the worse results are obtained with the Gauss-Newton gradient descent algorithm.
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Figure 5.4 Comparison of the cumulative error on keypoints points on MUG database using
different approaches

However, due to computational complexity of the Newton method (close to 45 seconds

per image) the bests results can be considered as the one using compressed polynomial

regression as we obtain more than 60 % of the point with an acceptable error and adequate

execution time (0.07 seconds per image).

We have seen that the use of polynomial projection coefficients can be used in different

parts of the Active Appearance algorithm : the texture representation or the gradient descent

algorithm . We will see in the next part how polynomial bases can be used for interesting

points and areas detection and as a descriptor for facial expression recognition.



From points of interest to facial

expressions



Chapter 6

Points of interest detection in the

characterization of facial textures

6.1 Introduction

The purpose of a keypoint detector is to determine the points in an image that are relevant

enough to allow an efficient object description and correspondence with respect to point-of-

view variations and to provide a limited set of well localized and individually identifiable

points.

Detecting regions covariant with a class of transformations in an image has now reached

some maturity in the computer vision literature. Several categories of keypoint detectors

have been proposed over the years: corner detectors (found at various types of junctions, on

highly textured surfaces, at occlusion boundaries, such as Harris [HS88], and Susan [SB97]

detector) and blob detectors (characterized by their boundaries such as SIFT [Low99], SURF

[BTVG06], MSER [DB06]). They are widely used in many computer vision applications

such as 3D reconstruction, motion tracking, robot navigation, object recognition, image

alignment (panoramas) and various methods have been proposed during the past decade.

Considering that polynomial bases have been used to detect and characterize singularities

in a vector field we propose to use them for an accurate keypoint localization in the image

domain.

6.2 Singular points detection of color/grayscale images

We consider a singular point of a color image any singular point (or singularity) of the normal

field to the image surface.
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6.2.1 Vector field of normals

If an image is noted as a vector application from IR2 to IR3 :

I : x = (xi)i∈{1,2} ↦→ I(x) = (I j(x) = I j(x1,x2)) j∈{1,2,3} (6.1)

then, for each point, the normal vector to the geodesic of the surface, more commonly

known as the normal vector is given by :

η =

(

∑
j

∂1I j,∑
j

∂2I j

)

(6.2)

where ∂iI j denote the partial derivative of I j with respect to xi

Figure 6.1 Field of normals of a color image

Field singularities

In general, a singularity is a point at which an equation, surface, etc., "blows up" or becomes

degenerate. Singularities are often also called singular points. Singularities are extremely

important in complex analysis, where they characterize the possible behaviours of analytic

functions. We will give in the next section some elements to better understand the definition

of a vector field singularity.
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Singular points : A point x is a singular point of a vector field if η(x) = 0. This singular

point is said simple if the differential of the field is regular (have no zero eigenvalues).

Moreover, the singular point is said hyperbolic if the differential of the field admits no

purely imaginary eigenvalues. Furthermore, the Grobman-Hartman theorem shows that in the

neighborhood of a simple and hyperbolic singular point, the field is topologically equivalent

to its linear part provided that no eigenvalue of the linearization has its real part equal to zero.

Thus, and considering the theorem says "local appearance", we are ensured that the topology

of a sufficiently regular field is completely determined by its singular points. This means

that the local structure of a regular field can be completely specified from the topological

characterization of affine vector fields. We will apply this property to the vector field of

normals to characterize the image topology.

Phase portrait : Let ν be an affine vector field i.e. :

ν(x) = A x+b (6.3)

where b represents the translation and A the infinitesimal strain field tensor. If A is an

invertible matrix , then the vector field has a unique singular point, given by:

x =−A
−1b (6.4)

which may not belong to vector field support (the support of a function is the set of points

where the function is not zero-valued or, in the case of functions defined on a topological

space, the closure of that set). The characterization of the field’s structure is then fully

determined by the spectral study of A , which we call phase portrait. However for general

image characterization the classification of such structures and their singular points is not

necessary.

Detection algorithm

The detection algorithm is based on two key steps: the calculation of the vector field of

normals and the research of singularities within the field. In the next section, we will detail

each of these phases, both presented in the context of a multi-scale and multi-resolution

scheme.

Computation of vector field of normals : As seen in equation 6.2, the computation of

the vector field of normals go through the estimation of partial derivatives of the image. In

order to do this, we choose to project the image components on polynomials of degree 1
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of a Hermite basis B= Bi, j(x) i=0..d1
j=0..d2

. As seen previously this bivariable polynomial basis is

defined using the discrete inner product :

⟨F |G⟩ω = ∑
x∈Ω

F (x)G(x)ω (x) (6.5)

with Ω the support domain of the basis. In this case we will use square supports of

(2L+ 1)× (2L+ 1) sizes reported to [−1;1]2 with respect to the associated values for x

points of the discretization. Therefore the weighting function is then defined by:

ω = exp(−
√

L(∑
i

x2
i )) (6.6)

that ensures multiscale approximation since the projection on a polynomial of this basis

implies convolution with a Gaussian function. Next we define as scale the L parameter.

Figure 6.2 Test image (right) and restricted area

Thus the vector field of normals is given by :

η(x) =

(

∑
j

⟨

B1,0

⏐

⏐

⏐I
Ω|x
j

⟩

ω
,∑

j

⟨

B0,1

⏐

⏐

⏐I
Ω|x
j

⟩

ω

)

= (η1,η2) (6.7)

where I
Ω|x
j is the restriction to the subdomain Ω centered in the point x of the jth

component of the image. Furthermore the notion of multi resolution can be added by shifting

the support of a D non-unitary value. Newt the parameter D will define the resolutions.
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Figure 6.3 Identical vector field parts computed at different scales : left -scale = 1 et center -
4 and right 16 see restricted area in Figure 6.2.

Figure 6.4 Vector fields computed at scale = 2 and resolution = 1 (left), scale =8 and
resolution 4 (center), and scale = 16 and resolution 8 (d) see restricted area in Figure 6.2.

Furthermore, to normalize normal vector components between−1 and +1, the projections

are divided by constants Ci, j determined according to :

Ci, j = M sup

(

∑
Ω

B+
i, j(x)ω(x), −∑

Ω

B−i, j(x)ω(x)

)

(6.8)

where M is the maximum coding value of the image and B+
i, j(x) (resp. B−i, j(x)) represent

a positive (resp. negative ) value of Bi, j in the point x of the support.

6.2.2 Singularity search in a vector field of normals

We have seen previously that in the neighborhood of a simple hyperbolic singular point, the

field is homeomorphic to its affine component. Therefore, to find the singularities of the field,

we begin to extract the local affine components. For this we use again a polynomial bivariate



6.2 Singular points detection of color/grayscale images 77

Hermite basis BS =
{

BS
i, j(x)

}

i=0···d1
j=0···d2

having LS as scale and DS as resolution features. So,

the model of the affine vector field in equation 6.3 becomes an affine local approximation :

η̃(x) =

⎛

⎝

⟨
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⟩

ωS

⟨
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⟩
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⟨
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0,0

⟩

ωS
⟨

η2|BS
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⟩

ωS

⎞

⎠ (6.9)

and the search for possibly associated singular points is done by solving the equation 6.4,

when A is invertible :

xs =−

⎛

⎝

⟨

η1|BS
1,0

⟩

ωS

⟨

η1|BS
0,1

⟩

ωS
⟨
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ωS

⟨

η2|BS
0,1

⟩

ωS

⎞

⎠

−1⎛

⎝

⟨

η1|BS
0,0

⟩

ωS
⟨

η2|BS
0,0

⟩

ωS

⎞

⎠ (6.10)

Still, for normalization, the projections are divided by the constant CS
i, j computed as

previously.

Thus, we consider singular points of an image the center points of Ω |x subdomains

where a singularity in the vector field of normals is detected. This applies when the affinity

assumption of the vector field is approximately correct. Instead of measuring the validity of

the affine model, we eliminate systematically singular points too distant from their support.

Therefore only points satisfying the equation :

∥xs∥1 < δΩ (6.11)

where δΩ is a restriction parameter whose default value is set to 1 are considered as

valid.

The matrix A is involved for "phase portrait" computation, and we can notice that it can

be derived by projecting the vector field of normals on first order Hermite basis polynomials.

Thereby, A can be seen as an approached form of the second order partial derivatives (sort

of Hessian matrix) and consider therefore its eigenvalues as principal curvatures of the image.

Particularly, the evaluation of the total curvature :

λ = tr(A ) (6.12)

and the gaussian curvature :

γ = det(A ) (6.13)

can be directly evaluated. The latter is directly involved in reversing the matrix A . This

information can be used when adopting the selection model of singular points, by keeping
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Figure 6.5 Extract of a normal vector field and its singular points detected using the next
parameters :L = 1, D = 1, LS = 2, DS = 1, δΩ = 1, LV = 2, δ∗ = 0. Red squares indicate
the area in the selection of the singular point.

only dominant and robust points. We now consider the centered reduced distribution λ∗ and

γ∗ of absolute values of λ and γ .

The robustness is ensured by a first decimation that eliminates any point for which λ∗
is not a local maximum for a (2LV + 1)× (2LV + 1) neighborhood, where LV is a search

parameter.

The preponderance is ensured by a second decimation that eliminates every point that doesn’t

correspond to the notion of significant curvature, defined by :

δ∗ < λ∗ < γ∗ (6.14)

where δ∗ is a search parameter whose default value is 0.

6.2.3 Application of the raw method

The raw method involves applying a single pass of the process described above, namely

a multi-scale and multi-resolution extraction of the normal field, and a multi-scale and

multi-resolution detection of singularities of the vector field.

Configuration examples : The raw method is applied with three different configurations,

having the same values for δ∗ = 0 and δΩ = 1 and the other next parameters :
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• Local detection (C1): L = 1, D = 1, LS = 1, DS = 1 and LV = 1

• Mean horizon detection (C2) : L = 2, D = 1, LS = 2, DS = 1 and LV = 4

• Wide horizon detection (C3) : L = 2r, D = 2r, LS = 2, DS = 2 and LV = 4

The r parameter in the third configuration is recursively determined by dividing by 2 the

minimum dimension of the image, until this value is lower than 100.

The results are visually compared to those obtained with the two state of the art keypoint

detection methods, namely SIFT and SURF. The latter are implemented using OpenCV

library functions with default settings SIFT and the threshold for hessian keypoint detector

used in SURF set to 800.

It should be noted that unlike our method that uses all the information of the RGB

channels, these methods work using the "luminance" version of images.

Results : Raw method tests are presented in the 3×2 figures below Figures 6.6 , 6.7 and

6.8. The representation of singular points is approximate (singular areas are round instead of

rectangular) to be comparable with the keypoint representation used in OpenCV.

Figure 6.6 Up : SIFT keypoint detection (left), Box image (input image), SURF
keypoint detection. Down : Singular keypoint detection, using C1 (left), C2

(center) and C3 (right) parameters
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Figure 6.7 Up : SIFT keypoint detection (left), Girl1 image (input image), SURF
keypoint detection. Down : Singular keypoint detection, using C1 (left), C2

(center) and C3 (right) parameters

Figure 6.8 Up : SIFT keypoint detection(left), Girl2 image (input image), SURF
keypoint detection. Down : Singular keypoint detection, using C1(left),

C2(center) and C3(right) parameters

6.2.4 Selection strategy

We will show now that we can integrate into a general outline the detection research of

singularities previously described. We will see the overall strategy allows to set the process

parameters, in order to establish an evolution framework.

Pyramid representation

The pyramid representation is based on a first pyramid that specifies fields of normals

supplemented for each level of resolution by a second pyramid of scales (see Figure 6.9). It

is freely inspired by common strategies in the image processing field.
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Figure 6.9 Pyramid representation using r (resolutions) and s (scales)

Fields of normals pyramid

The multi-resolution fields of normals pyramid is constructed jointly with a multi-resolution

image pyramid. To build these pyramids, we must first consider the sizes N1×N2 of the

images (resp. fields). Regarding to the image pyramid, it is a succession of avatars of the

initial image I(0). The transition from one level (r) to the upper level (r+ 1) is made by

keeping the projections on the polynomial of degree 0 of a bivariate polynomial Hermite

basis BR = BR
i, j(x) i=0..d1

j=0..d2

namely:

I(r+1) =
⟨

I(r)|BR
0,0

⟩

ωR
(6.15)

This basis is configured using the parameter LR for scale and DR for resolution which,

by default, are set to LR = 1 (for calculation speed) and DR = 2 (standard multi-resolution).

The remaining parameter is the number of levels of the pyramid, that can be obtained by the

number R such as :

N(R) = inf
{

r|N(r) < Nmin

}

(6.16)

using a constant Nmin that we choose to be equal to 128. Thereby, to avoid the sub-

resolution we supplement the previous rule with the next condition:

R = R−1 i f N(R) <
2
3

Nmin (6.17)

The fields of normals pyramid is defined as the series of the fields ηR obtained according

to Equation 6.7 applied to images I(r) using a basis that we denote B
η . In order to ensure a
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better disassociation between the influence of the various parameters and the overall research

process, by default we use small scale and resolution characteristic Lη = 1, Dη = 1.

Scales pyramid

To deal with scale changes a scale selection method is applied. The idea is to select the

characteristic scale of a local structure, for which a given function attains an extrema over

scales. Singularities detection is based on the local assessment of an affine model (see

Equation 6.10) which depends on a B
S basis. For a given resolution level (r), we construct

a scale pyramid by estimating the local affine models of the field η(r) using a sequence of

B
(s) bases where (s) is the calculation scale. For the entire set of these bases the resolution

parameter is constant, namely D(s) = 1 in order to have a complete search. However, the

scale parameter will vary in the range :

s ∈ 1...S(r) (6.18)

where the upper boundary S(r) depends of the resolution level. We use inherent basis

properties when transforming by polynomial bases (see wavelet packet decomposition) to

optimize the number of operations and avoid redundant calculations. These boundaries

correspond to

S(r) = (DR)r (6.19)

and the bases B(s) will have the scale parameter set to L(s) = s.

In the previous section we have described some local search parameters. Their values

have to be adapted to the new search algorithm. The parameter LV,(s) that describes the size

of the neighborhood for extrema selection of the total curvature, is set equal to the scale s to

reduce the number of parameters while maintaining a reasonable decimation

LV,(s) = L(s) = s (6.20)

The parameter δ∗ for significant curvatures selection (see Equation 6.14) remains constant

for about the entire process. This choice is made to simplify the parameters of a comprehen-

sive and global process. Finally, the parameter δΩ of singularity localization (see Equation

6.11) is also constant for the entire search process.
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Global singularities selection

The detection process is, for now, designed to favour local representation and non-redundancy.

It lacks, however, of a purely global stage to better guarantee that each singular point has its

inter-resolution and inter-scale specificity. Let X be the set of singular points detected using

the double pyramid system. Each point x has associated several characteristics :

X= x = ((x(k))k,r,s,m,E,θ) (6.21)

where (x(k))k represent the set of points coordinates related to different resolutions, r the

resolution level where the point was detected, s its scale, m the size characteristic , E the

error and θ the associated orientation of the point. The size characteristic is calculated for

the detected area of the point taken at the resolution 0 which size is (2m+1)× (2m+1) and

therefore :

m = L(s)(DR)(r) (6.22)

where (r) and (s) are the scale and resolution at the detected scale. For the error

characteristic we favour the points that are detected at a small resolution or at a bis scale, to

ensure the robustness to smoothing. So,

E = m−1||x(r)||1 (6.23)

The key point orientation is calculated from the field of normals at the resolution r where

the singularity was detected using PCA (as PCA gives the direction along which data varies

the most) on the key point size region.

The cleaning of X is the final step of our algorithm, where we eliminate each point that

can suffer from side effects, keeping only the points that ensure :

m(x)< p
(0)
i < N

(0)
i −m(x) (6.24)

where N
(0)
i is one of the sizes of the initial image. The other cleaning strategy is related to

the points density, we decide to keep only the points such as:

r(x) = sup{r(y)}
y∈U(x)

(6.25)

where U(x) is the (2LU(x)+1)× (2LU(x)+1) neighborhood of a point x. The size of the

neighborhood can greatly influence the results. Two strategies are then possible - one with a

big power of decimation where the size U(x) evolves with the resolution level (for example,



6.2 Singular points detection of color/grayscale images 84

LU(x) = R− r(x)) and another strategy with a weaker decimation , where the size U(x) stays

fixed (for example, LU(x) = 1)

After the cleaning of the entire X we can select the most relevant points with respect to

their associated error. In order to do this, we choose the subset of Xa singular points such as:

Xa = x ∈ X|E(x)< Ē−ασE (6.26)

where E is the X average error and σE the standard deviation of these errors. Again, it is

obvious that the value of α can greatly influence the final number of selected points. However,

the values of α situated around 1 seem to be sufficient in most cases where we primarily seek

to restrict the number of singular points, the default value will be set to α = 1.15.

Experimental results

Detection results obtained using the global algorithm are presented below, using the default

parameters values namely : LR = 1, DR = 2 , Lη = 1, Dη = 1, LV,(s) = L(s) = s , D(s) = 1,

δλ = 1, δ∗ = 0, LU,(x) = 1 and α = 1.15

Figure 6.10 Left - SIFT detector (223) and right- SURF detector(144)

Figure 6.11 Polynomial sigularities detector sizes (left) and orientations (right)
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Figure 6.12 Left - SIFT detector (639) and right- SURF detector(1127)

Figure 6.13 Polynomial sigularities detector (524) sizes (left) and orientations (right)

6.3 Evaluation on Oxford dataset

In 2005, Mikolajczyk et al.[MS05] evaluated affine covariant region detectors, and compared

their performance on a set of test images under varying imaging conditions. They have

defined some performance measures for detector evaluation and also provided a dataset of

benchmark image sequences (the Oxford dataset) to test the effects of blur, compression,

exposure, scale/rotation, and perspective change. Each image sequence is composed by

six images with a gradual geometric or photometric transformation and the ground truth

homographies between the first image and the rest of images in the sequence.

In the perspective change test the camera varies from a fronto-parallel view to one with

significant foreshortening. The scale change and blur sequences are acquired by varying the

camera zoom and focus respectively. at approximately 60 degrees to the camera. The scale

changes by about a factor of four. The light changes are introduced by varying the camera

aperture. The JPEG sequence is generated using a standard image browser with the image

quality parameter varying from 40 to 2%.
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(a) Scale/rotation (b) Blur

(c) Exposure
(d) Perspective transform

(e) Compression (f) Illumination

(g) Zoom (h) Rotation

Figure 6.14 Example images used for the evaluation tests. Images (a) - (e) are from the
Oxford dataset, Images (f)-(h) are from the additional dataset

In addition to the 8 sequences of images from the Oxford dataset we use a supplementary

dataset of 5 sequences from the dataset of Jared Heinly [HDF12] - 2 sequences that have a

rotation transform between 0 and 180°,one sequence with a rotation transform between 0

and 360°, one sequence with a zoom transformation and one with an illumination change.

Some example images used in our tests are presented in Figure 6.14.

In addition to our detector, we analyse the performance characteristics of nine recent

key point detection methods : AKAZE [ANB13], BRISK [LCS11], FAST [RD06], KAZE

[ABD12], MSER [DB06], ORB [RRKB11], SIFT [Low99], STAR [AKB08] and SURF

[BTVG06].
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Keypoint detectors

In this subsection we give a short description of the recent keypoint detectors.

• SIFT algorithm uses a set of sub-octave Difference of Gaussian filters, looking for 3D

extremas in the resulting structure, and then computing a sub-pixel space and scale

location using a quadratic fit. To achieve invariance to image rotation each keypoint

is assigned one or more orientations. The SIFT detector is invariant to translation,

rotations, and re scaling of the image.

• SURF detector proposes an efficient computation of features similar to SIFT, where,

the Hessian matrix is approximated and gradients are calculated by a set of box-type

filters and integral images.

• FAST compares pixels on a ring centered at a feature point. The algorithm works in

two steps: in the first step, a segment test based on the relative brightness is applied

to each pixel of the processed image, followed by an refinement step that allows to

narrow the results using non-maximum suppression. FAST is several times faster than

other existing corner detectors but it is not robust to high levels of noise.

• MSER algorithm extracts from an image a number of co-variant regions, called

Maximally Stable Extremal Regions. An MSER is a stable connected component of

some level sets of the image. Optionally, elliptical frames are attached to the MSERs

by fitting ellipses to the regions.

• STAR also known as CenSurE detector computes the extrema of the center-surround

filters over multiple scales, using the original image resolution for each scale. They are

an approximation to the scale-space Laplacian of Gaussian and can be computed in

real time using integral images.

• BRISK points of interest are identified across both the image and scale dimensions

using a saliency criterion. In order to boost efficiency of computation, keypoints are

detected in octave layers of the image pyramid as well as in layers in-between. The

location and the scale of each keypoint are obtained in the continuous domain via

quadratic function fitting.

• ORB uses Fast multi-scale detection with an efficiently computed corner orientation

using the intensity centroid method.

• KAZE approach uses a nonlinear diffusion (variable conductance diffusion) to detect

keypoints in nonlinear scale spaces keeping important image details and removing
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noise. The nonlinear scale space is build efficiently by means of Additive Operator

Splitting (AOS) schemes.

• AKAZE uses a novel mathematical framework called Fast Explicit Diffusion (FED)

embedded in a pyramidal framework to speed-up dramatically the nonlinear scale

space computation.

Performance Metrics

All the images of each sequence are related by a 2D homography H. This known transfor-

mation is used as ground truth data, allowing to know where a point pA, extracted from an

image A, should be projected in image B of the same dataset by pB = H pA. Similarly, points

extracted from the image B can be projected back to image A by using the inverse of H.

We first use the repeatability measure describing how well the detectors determine

corresponding scene regions. This is measured by comparing the overlap between the ground

truth and detected regions, using the overlap error , defined as :

εS = 1− (A∩HTBH)/(A∪HTBH) (6.27)

where A and B are the regions and H is the homography between the images. A match is

assumed correct if the error in the image area covered by two corresponding regions is less

than 50 percent of the region union, that is, εS < 0 : 5.

To determine the correspondent of a match, we use ground truth data to warp keypoints

from the first image of the dataset into all remaining images. The repeatability score for a

given pair of images is computed as the ratio between the number of correct matches and the

number of regions in the train images.

Knowing that in a practical application regions need to be matched or clustered, and

apart from the repeatability of the detection the distinctiveness of the region is important, we

then compute a descriptor for the regions and then check to what extent matching with the

descriptor gives the correct region match. In our tests we use the Latch descriptor [LH15] that

won the CVPR 2015, OpenCV State of the Art Vision Challenge, in the Image Registration

category.

To compute matches we adopt a test that compares the ratio of distances between the two

best matches for a given keypoint, and rejects the match if the ratio is above a threshold of

0.8 for all tests (introduced in [Low04]).

The ratio of correct matches for each descriptor to the total number of ground truth

matches is defined to be the precision.
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Finally we also measure the computation time per frame and per keypoint. They have all

been measured on a Intel Xeon, 2.53 GHz, Windows PC.

6.3.1 Feature extraction time comparison

In this section the extraction times per frame, quantities of keypoints and extracted time per

keypoint are compared for all the detectors described above. All results are computed on the

entire set of images from the Oxford dataset and the additional sequences 10 times and the

mean results are given in the figure 6.15 .

Detector Keypoints Time per frame(ms) Time per Keypoint(ms)

AKAZE 2900.6 245.473 0.109424
BRISK 6826.06 126.4728 0.020359
FAST 14304.6 7.815764 0.000738
KAZE 2813.66 746.2391 0.356434
MSER 927.489 572.4679 0.721546
ORB 498.068 24.6045 0.049343

POLY(ours) 3141.97 594.283 0.216903
SIFT 5478.33 340.1102 0.101359
STAR 889.148 37.58656 0.075767
SURF 5324.18 166.3272 0.034757

Figure 6.15 Averaged computation times for the different detectors

We compare our method to OpenCV implementations of the other detectors that are

efficiently optimized. In comparison to other methods we can see that the Poly method is not

very efficient. Presently our method outperforms MSER and KAZE keypoint detectors. How-

ever,we think that it is still possible to optimize our method in order to be fully comparable

with the other keypoints detectors.

The largest number of keypoints are extracted by the FAST detector and the least number

of keypoints is provided by ORB (due to the default OpenCV parameters). The variation in

the number of features is expected, since the various detectors respond to different types of

image structures. The most performant feature detector is FAST which is 48 times faster than

SIFT and 95x faster than KAZE. On average FAST takes 7ms per image and our method

595ms.
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6.3.2 Results under controlled transformations

To verify the accuracy of the different detectors to a separate transformation , we deform our

image using the next transformations: rotation, scaling, blur and illumination. All the tests

work in an analogous way: using a given source image (the first image of each sequence of

our database) synthetic data is generated using the known transformation. Depending on the

test case, we use the following algorithms:

• Rotation - rotation of the image source image around the Oz axis in degres (from 0 to

360).

• Scale - resizing of the source image from 0.25X to 2.0X of the original size

• Illumination - changing the overall brightness of the source image( from -127 to 127)

• Blur - adding of a gaussian blur (the kernel size varies from 3 to 17 pixels )

All transformations are performed on the first image of the 13 sequences from the image

dataset.

Figures 6.16, 6.17,6.18,and 6.19 show the comparison of all the detector performance

under rotation, blur, brightness, and scale transformations, respectively.

It can be observed that for rotation transformations our method performs similarly (the

shape of the curve) to SURF and STAR detectors, ie the repeatability score i more sensitive

to orientations like 45, 125 and 225 degrees, but with lower repeatability scores.

As for the precision, it can be observed that the detectors can be divided in two categories,

those who have a good precision ie the number of correct matches is close to the number of

all matches such as SIFT, ORB or SURF and those which are not robust against rotations

larger than 30 degrees , such as KAZE, STAR or AKAZE. The average precision given by

our detector is 50%, and it can be concluded that our method, even if we give an orientation

for each keypoint is not robust to rotation changes for the moment and we should change

our method of orientation assignment. FAST detector is not designed to be robust to rotation

changes therefore it gives the worse results.

With respect to blur transformation, our method is the one that gives the best results for

the most important filter size. The poorer results for this type of transform are obtained using

Mser, SIFT and ORB detector. Blur changes may affect the keypoint’s scale and orientation

calculation, leading to a worse precision. Yet, it can be seen that ORB and SIFT have good

precision results, due to the good performance of the Latch feature descriptor that overcomes

this errors.
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Figure 6.16 Repeatability (up) and precision (down) under rotation transformations

For brightness transform it can be observed that our detector gives slightly inferior results

in terms of repeatability. As for the precision results, they are very similar to the other

methods. Mser detector appears to be the most sensitive to this kind of transformation.

Since the FAST detector is not invariant to scale transformations, we did not showed it’s

results in figure 6.19. The best repeatability rates are observed for AKAZE. It is interesting

to note that ORB has a good repeatability rate for large scales, and a poor one for small

scales, which is the inverse for SURF. The results of our detector are similar to STAR, SIFT

and BRISK and they outperform KAZE for most of the scale factors and MSER. In terms

of precision, our method is the least performant, we suspect that mixing our detector with a

Latch descriptor is not very efficient.
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Figure 6.17 Repeatability (up) and precision (down) under blur transformations

6.3.3 Matching experiments

We now display real matching situations, using all images form the dataset joined with

the homography matrices. Only transformations that were not presented overhead will be

discussed.

For each transform the left side of the results present small transforms while the right

side corresponds to larger transform, resulting in low quality images and/or in images where

objects are very different from the ones in the reference image and therefore difficult for

matching.

Figure 6.20 shows the mean results for light changes for the images on Fig.6.14(c) and

(f). Compared to the other detectors our method presents very good repeatability results,

especially for large transforms. However using the combination detector /descriptor the
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Figure 6.18 Repeatability (up) and precision (down) under brightness transformations

precision results are quite low. All the other curves show good robustness to illumination

changes, having good repeatability and precision scores.

Figure 6.21 shows the score for the JPEG compression sequence from Fig 6.14 (e). For

this type of transform the detectors having the higher repeatability rate are KAZE an AKAZE.

Keypoint detection in the nonlinear space seems to be the more adapted to image compression.

While constructing the scale-space pyramid the Gaussian blurring does not respect the natural

boundaries of objects and smoothes in the same degree details and noise when evolving

the original image through the scale space. As the noise becomes very important for high

compression rates the use of non linear diffusion allows keeping important image details and

removing noise. The degradation under increasing compression artefacts is similar for all
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Figure 6.19 Repeatability (up) and precision (down) under scale transformations

detectors. Although our method presents lower repeatability results than AKAZE and KAZE,

it outperforms most of the other keypoint detectors.

Figure 6.22 shows the mean results for the boat sequence from Fig 6.14 (a), and the

bark sequence . The main image transformation is a scale change and in-plane rotation. In

terms of repeatability the ORB keypoint detector performs best, followed by SIFT and our

Polynomial detectors. The table 6.1 shows the mean repeatability scores of all the detection

methods for each image from the two sequences with zoom and rotation transformations.

We notice a considerable degradation of the repeatability and precision scores between the

images boat, that have a structured scene and the bark sequence having a textured scene

(presenting some leafs). The scene type is therefore very important for the selection of the

keypoint detector.
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Figure 6.20 Repeatability (up) and precision (down) under illumination changes

Figure 6.23 presents the comparison results under a perspective transform. It can be

observed that for small viewpoint changes the best detectors are ORB, MSER and AKAZE in

terms of repeatability and SIFT, ORB and BRISK in terms of precision. The average results

of our detector are explained by its sensitivity to rotation transforms. The repeatability score

for a viewpoint change of 20 degrees varies between 18%and 52% and decreases for large

perspective transforms to 4%−11%.

6.4 Regions of interest in a face alignment algorithm

During the evaluation stage of our keypoint detector we have noticed that in comparison

to the sift or surf detectors on face images the areas that were selected with our method

where more significant ie our detector always has chosen the eyes, nose and mouth areas

and ignored regions with constant texture like the cheek or front skin. Since in the search
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Figure 6.21 JPEG compression repeatability (up) and precision scores(down)

process we keep only dominant and robust points, in face images such points correspond to

key regions we decided to test an alignment algorithm.

We decided to implement an algorithm using a cascaded regression similar to the one

used in the compressed discriminative AAM ( Algorithms 3 and 4) that uses interest key

areas as features for the regression algorithm. First we train an algorithm that uses the warped

texture inside the shape as feature in the regression.

The evaluation stage is similar to the one used in Algorithm 4. The main difference

between the two algorithms is that in this chapter we use only a shape model in the training

stage, and not an combined shape and appearance model used in Algorithm 4.

Then we modify the Algorithms 8 and 9 in order to integrate key areas regions as features

in the cascaded regression instead of the whole face texture. In addition to the regions

detected with our polynomial method we evaluate the ones found with the SIFT and SURF

approaches. Therefore step 4 of the 8 and step 3 in the 9 are changed such as fi = correspond

to the concatenation of the detected key regions in the face images.
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Algorithm 8 Training of cascaded regression

Input: N images with landmarks annotations
1: Build a statistical shape model
2: for t = 1 to T do
3:

{

δqp,t

}S

j=1 Sample perturbations
4: fi = the set of pixel intensities within the convex hull of the shape given by δqp,t

5: if t>1 then
6: Estimate (δqp,t) using Rt−1 and add it to the current parameters
7: end if
8: (q̃p,t) = (qp,t)− (δqp,t)
9: Rt = argminR ∑i d(R(fi),(q̃p,t))

10: end for
11: Output R = (R1, ...,RT )

Algorithm 9 Evaluation of the cascaded regression

Input: Image I, initial shape S0 and the set of regressors R = (R1, ...,RT )
1: Project shape to qp,t parameters
2: for t = 1 to T do
3: fi = the warped texture inside the shape given by qp,t

4: (δqp,t) = Rt(fi) // evaluate regressor
5: (qp,t) = (qp,t−1)+(δqp,t) // update (qp,t) parameters
6: Back project parameters to compute St

7: end for
8: return fitted shape
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Images
Repeatability Precision

Boat Bark Boat Bark

1 0.4117 0.1587 0.6598 0.3765
2 0.2294 0.0455 0.2086 0
3 0.0821 0.0352 0 0
4 0.05092 0.0265 0 0
5 0.0436 0.0177 0 0

Table 6.1 Mean repeatability scores for Bark and Boat sequences

Figure 6.22 Repeatability (up) and precision (down) under zoom and rotation changes

An example of the features used in our algorithms for three different images is given in

Figure 6.24.

We may observe that in the regions detected by SIFT there is always a big centered one

that could be used to detect the face in several images. SURF also selects big regions around
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Figure 6.23 Repeatability (up) and precision (down) under zoom and rotation changes

the eyes, the nose and the lips. Our method gives smaller and more accurate regions of

interest.

6.4.1 Experimental results

For each database we have trained four different models - one using the entire texture and

three that employ face regions of interest detected by SIFT, SURF and our polynomial

method. In the algorithm using SURF, as previously we have set the Hessian threshold to

800.

Table 6.2 shows the comparative fitting results on the MUG database. It can ve observed

that the SIFT, SURF and the method using the entire texture present similar results, and the

approach using polynomials outperforms them. The number of interest regions is similar

between SIFT and Polynomial detectors, and SURF detects much more regions (also visible

in Figure 6.24 ).
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Poly SIFT SURF

Figure 6.24 Detected areas in a face image

Mean Error Mean error on face interior points Mean number of key regions

Raw 0.0791 0.0693
Poly 0.0720 0.0613 100
SIFT 0.0793 0.0678 104
SURF 0.0787 0.0675 275

Table 6.2 Experimental results on MUG database

Table 6.3 shows the comparative results on IMM, MultiPIe and Cohn-Kanade databases

where ME means the mean error and ME IP the mean error on face interior points. We can

observe that for the 3 databases the best method is the one using the entire texture inside the

convex hull of the shape. Since the dimensions of faces are quite small in this three databases,

it is preferred to use all the information, and not only in the regions of interest, insufficient
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Methods
IMM Cohn-Kanade MultiPie

ME ME IP ME ME IP ME ME IP

Raw 0.1049 0.0797 0.0690 0.0594 0.1094 0.0970
Poly 0.4027 0.3489 0.1873 0.1692 0.2917 0.2589
SIFT 0.2892 0.2530 0.1677 0.1558 0.2469 0.2284
SURF 0.3086 0.2631 0.1414 0.1216 0.2386 0.2122

Table 6.3 Experimental results on IMM, Cohn-Kanade and MultiPie databases.

for a good alignment. It can be also observed that for IMM database the regions detected

with our method are not pertinent to the algorithm. As we showed before, our method is

sensitive to rotations, and since in IMM there is an orientation variation our approach is not

suited for that case.

6.4.2 Discussion

We have presented in the first part of this chapter an original method for interest key-

point/zones detection. The presented approach works on color and grayscale images, the

number of features is adaptable over a large range by a simple threshold and gives the

possibility to use different types of bases (and therefore use different types of smoothing in

the construction of scales pyramids) while creating the multivariate basis. Furthermore our

approach is robust to scale, illumination and blur changes. Even if we give an orientation for

each keypoint our keypoint detector is sensitive to rotations, therefore we should change our

method of orientation assignment.

In the second part of the chapter we have used the detected regions instead of the entire

texture as feature in a regression algorithm. Results show that for databases comporting facial

rotations our approach is not relevant and that for databases where the face is of reasonable

size( superior that 300 pixels such in MUG database) our approach gives better results than

using the entire texture information.

In the next chapter we will detail how the results of a tracking algorithm can be exploited

to the description of expression and present a polynomial based texture representation model

as a descriptor for facial expression information.



Chapter 7

Polynomial based texture representation

for facial expression recognition

7.1 Introduction

In this chapter, we propose a new polynomial based texture representation method for

extracting information about facial expressions. While many appearance-based methods have

been proposed over the years to improve the performance of facial expression recognition,

most descriptors are usually unable to both provide precise multi-scale / multi-orientation

analysis and handle the redundancy problem effectively.

The automatic recognition of facial expressions is one of the most challenging and

popular topics in the computer vision domain as it impacts important applications such as

virtual reality, broadcasting, user profiling or video conferencing.

An essential step for a successful facial expression recognition is the extraction of

facial features that attempt to find the most effective representation of face images. There

are two common feature extraction approaches : geometric feature-based systems, using

major face components and/or feature points, and appearance based systems using image

filters. A thorough survey of the existing work can be found in [WFY12, Bet12, SGM09].

Experimental results show that methods using Gabor wavelet transforms, derived from

biological principles on the visual system, provide superior performance and are an effective

method for facial expression recognition [ZLSA98, BLF+05]. However, it is both time and

memory intensive to convolve face images with a bank of Gabor filters to extract multi-scale

and multi-orientation coefficients.

In this chapter, we investigate the use of coefficients resulting from polynomial projections

for texture representation within a system of facial expression recognition. We show in section
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7.2 our proposed method and we compare in term of computational efficiency polynomial

transforms to Gabor transforms. Experimental results obtained by applying the proposed

technique on MUG [APD10a] and the extended Cohn-Kanade [LCK+10] databases are

provided in section 7.3 and show significant recognition rates over state-of-the-art methods.

Finally, we will conclude and open the discussion on further works in section 7.4.

7.2 Base projections for facial expression recognition

The orthonormal polynomial decomposition allows to extract the different frequency com-

ponents of a signal and offers the possibility to use multiresolution piecewise polynomial

decomposition, so it can be used for the feature extraction within a system of facial expression

recognition.

We use as input to our approach still face images labeled with landmarks around fiducial

points.

Figure 7.1 Example of input images with fiducial points

According to the difference of recording environment, the recorded data may contain

different facial locations and scales. To eliminate such variation, we normalize each face.

This is done by a global Procrustes analysis (GPA), followed by a histogram equalization.

We will show later the improvement of this transform on the classification results.

To extract facial features we propose to calculate the coefficients of polynomial pro-

jections on a complete basis on each fiducial point. Two different modes of computation

are available : coefficients can either be calculated on texture patches, or retrieved from a

multi-resolution polynomial decomposition.

For the first mode - SR_Poly, feature vector for each facial point is extracted from a

19x19 pixels image patch centered on that point. This size was chosen to be similar to the
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size calculated empirically for the approach using LBP histograms. Hence, the polynomial

coefficients are obtained via projections on a 19x19 complete Hermite basis with a Chebychev

function for the collocation points. Since the coefficients provide a hierarchical representation

of image structures, we can reduce their number to speed-up the computations with little

efficiency loss.

For the second mode- MR_Poly, we use a 3 level multi-resolution approach proposed

in section 3.2. To have a similar representation to Gabor wavelets as [ZLSA98] we use a

complete 3x3 Hermite basis with a Chebychev function for collocation points. In this way,

we will have a representation with 3 scales and 9 orientations. The regions around every

fiducial point vary from 81x81 pixels to 3x3 pixels. Figure 7.2 shows the first level frequency

decomposition of a 3x3 polynomial approach.

Figure 7.2 Frequency decomposition of the polynomial transform, where hi, j represent
different subbands

Comparison with Gabor transform

Polynomial representations are similar to complete wavelet packet decompositions for a de-

fined scale. Using a multi-resolution polynomial approach we can obtain a multi-scale/multi-

orientation non-redundant representation.

Usually, in an automatic facial expression recognition system using Gabor wavelets, a

bank of Gabor filters, composed of filters in distinct orientations and frequencies, is applied to

the face to extract the feature vector. The filter bank is usually composed of four frequencies

and six orientations. So to calculate the Gabor feature vector, each image is convolved with

24 Gabor kernels, which sizes varies with the frequencies. This representation is memory
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and time consuming. For example to calculate the 6 different orientations for the biggest

Gabor kernel are required 6×n×n multiplications, n being the size of the kernel.

In 2-D the Gabor filter is defined by a two-dimensional Gaussian function modulated by a

sinusoidal wave and is usually used for edge detection. The filter has a real and an imaginary

component representing orthogonal directions. In this chapter we will use the real part of

Gabor filters for feature extraction. The expression of the 2-D real Gabor filter is given by:

g(x,y,λ ,θ ,ψ,σ ,γ) = exp(−x′2 + γy′2

2σ2 )cos(2π
x′

λ
+ψ) (7.1)

where λ represents the wavelength of the sinusoidal factor, θ the orientation of the

normal to the parallel stripes of a Gabor function,ψ is the phase offset,σ is the sigma/standard

deviation of the Gaussian envelope and γ is the spatial aspect ratio, and specifies the ellipticity

of the support of the Gabor function.

Figure 7.3 Gabor wavelets used for feature extraction

By using the polynomial projections with a 3x3 complete basis, our image patch is

partitioned in 9 subblatices at each step, being considered as "orientations". Hence, the

multi-scale polynomial transform will be more compact than a Gabor wavelet representation,

thus allowing the disappearance of most sampling problems, such as the trade-off between

orientation sampling and spatial sampling.

7.3 Experimental results

7.3.1 Experimental set-up

The Cohn-Kanade database [LCK+10] is one of the most comprehensive database in the

current facial-expression-research community and consists of expression sequences of 210
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adults, starting from a neutral expression and ending in the peak of the facial expression.

Participants were instructed by an experimenter to perform a series of 23 facial displays, six

of which were prototypical emotions including angry, disgust, fear, joy, sad and surprise. We

use a subset of 115 subjects for our experiments. Only the first (neutral) and final image (the

prototypical expression) of each of the selected sequences are considered for our training

and testing resulting in 401 images - 45 Anger, 59 Disgust, 25 Fear, 69 Joy, 98 Neutral, 28

Sadness and 82 Surprise.

MUG database [APD10a] includes image sequences of 86 subjects performing the six

basic expressions more than once. The image sequences begin and end at neutral state and

follow the onset, apex, offset temporal pattern. For our experiments we used 401 images of

26 subjects that are manually annotated with 65 landmarks by removing the chin landmarks.

The images are classified using the following distribution: 57 Anger, 71 Disgust, 47 Fear, 87

Joy, 25 Neutral, 48 Sadness and 66 Surprise.

To evaluate the generalization performance to novel subjects, we have adopted a 10-fold

cross-validation testing scheme in our experiments. More precisely, the dataset was randomly

divided into ten groups of roughly equal numbers of subjects. Nine groups were used as the

training data to train classifiers, while the remaining group was used as the test data. The

above process was repeated ten times for each group in turn to be omitted from the training

process. As the faces in the database are frontal view, we did not consider head pose changes.

7.3.2 Normalizing images

In this part we present classification rates using original and normalized images. The showed

results are obtained using single resolution polynomial projections for feature computation.

The confusion matrix obtained from Cohn Kanade database using polynomial projections

(SR_Poly) is presented in Table7.1.

truth pred(%) An Di Fe Ha Ne Sa Su

Anger 81.4 3.3 5.3 0.0 2.9 14.8 0.0
Disgust 4.7 91.8 0.0 0.0 1.0 0.0 0.0

Fear 4.7 0.0 84.2 5.7 0.0 11.1 0.0
Happiness 0.0 1.6 10.5 92.9 1.0 0.0 0.0

Neutral 0.0 3.3 0.0 1.4 89.2 3.7 0.0
Sadness 9.3 0.0 0.0 0.0 5.9 66.7 0.0
Surprise 0.0 0.0 0.0 0.0 0.0 3.7 100

Table 7.1 Confusion matrix for the CK database (SR_Poly)
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We see that happy, disgust, neutral, and surprise are detected with high accuracy while

fear is presenting slightly inferior detection.

The confusion matrix obtained from MUG database using polynomial projections

(SR_Poly) is presented in Table 7.2. In this case neutral presents the lowest detection,

followed by fear. This is due to the low quantity of neutral images in the database. All others

emotions where predicted with high accuracy.

truth pred(%) An Di Fe Ha Ne Sa Su

Anger 85.7 1.4 0.0 0.0 5.0 2.0 0.0
Disgust 4.8 97.1 0.0 0.0 0.0 0.0 0.0

Fear 0.0 0.0 90.9 1.2 5.0 0.0 7.2
Happiness 1.6 1.4 2.3 96.5 0.0 0.0 1.4

Neutral 3.2 0.0 2.3 1.2 85.0 8.2 0.0
Sadness 4.8 0.0 0.0 0.0 5.0 87.8 1.4
Surprise 0.0 0.0 4.5 1.2 0.0 2.0 89.9

Table 7.2 Confusion matrix for the MUG database (SR_Poly)

As we use later for feature calculation facial points obtained using AAMs that are

directly calculated in the mean face we perform the same experiments on modified images

using Global Procrustes Analysis followed by a histogram normalization. The mean face is

calculated independently for each database because of differences in annotation (68 versus

80 points). Some examples of the changed images are presented in Figure 7.4. It can be

observed that after GPA, that includes optimal translation, rotation and scale all the faces

have similar shape and are centered.

Figure 7.4 On first row - original images, on second row, modified images using Global
Procrustes normalization. Left : MUG , Right : Cohn-Kanade database

The confusion matrix obtained from MUG normalized database using polynomial projec-

tions (SR_Poly) is presented in Table 7.4 and for Cohn-Kanade database in Table 7.3.
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It can be observed that after normalization on Cohn Kanade database disgust, anger,

happiness and surprise have an improved score. Furthermore mean classification rate increase

from 89.81% to 92.05%.

truth pred(%) An Di Fe Ha Ne Sa Su

Anger 87.8 0.0 4.2 0.0 4.8 13.0 0.0
Disgust 2.4 96.6 0.0 0.0 1.0 0.0 0.0

Fear 2.4 0.0 79.2 7.0 0.0 0.0 0.0
Happiness 2.4 0.0 8.3 93.0 0.0 0.0 0.0

Neutral 0.0 3.4 4.2 0.0 88.5 0.0 0.0
Sadness 4.9 0.0 0.0 0.0 5.8 87.0 0.0
Surprise 0.0 0.0 4.2 0.0 0.0 0.0 100.0

Table 7.3 Confusion matrix for the CK database (SR_Poly) using normalized images

As for MUG database it can be noticed that disgust and surprise detection is higly

improved (about 10% for each expression) and the others are detected with the same rates.

Classification accuracy is also enhanced from 91.52% to 94.25%.

truth pred(%) An Di Fe Ha Ne Sa Su

Anger 96.6 0.0 0.0 0.0 3.8 0.0 0.0
Disgust 3.4 98.6 0.0 0.0 3.8 0.0 0.0

Fear 0.0 0.0 90.7 1.2 3.8 0.0 8.5
Happiness 0.0 1.4 2.3 97.7 0.0 0.0 1.4

Neutral 0.0 0.0 4.7 0.0 84.6 2.1 0.0
Sadness 0.0 0.0 0.0 0.0 3.8 95.8 1.4
Surprise 0.0 0.0 2.3 1.2 0.0 2.1 88.7

Table 7.4 Confusion matrix for the MUG database (SR_Poly) using normalized images

7.3.3 Comparative Study with other methods

A comparison of the proposed methods with Gabor wavelets and LBP based texture descrip-

tors [SGM09] is shown in Figures 7.5,7.6 and Table 7.5.

Local binary pattern histograms The original LBP operator was introduced by Ojala et

al., and was proved a powerful means of texture description. The operator labels the pixels

of an image by thresholding a 3×3 neighborhood of each pixel with the center value and

considering the results as a binary number, and the 256-bin histogram of the LBP labels
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computed over a region is used as a texture descriptor. [SGM09] use as descriptor histograms

with 59 bins that contains only uniform patterns.(that have at most two bitwise transitions

from 0 to 1 or vice versa when the binary string is considered circular ). LBPH descriptor

that we use in our tests are LBPu2
8,2 descriptors computed for each key point and concatenated.

Figures 7.5 and 7.6 show the comparison results in terms of classification accuracy for all

methods on annotated points with (right) and without (left) normalization, and Table7.5 the

execution time for each approach. All the experiments were carried on a Dell desktop with

2.53 GHz Intel Xeon CPU. The time given for feature extraction is for one single fiducial

point. It can be observed that even if SR_poly performs with a slightly inferior precision

(≈ 2%), it appears to be much better in terms of computation times w.r.t. LBP based method.

It can be observed that using normalization, all methods except Gabor wavelets on Cohn

Kanade database have an increased classification rate.

Methods
Classification Rates(%)

Cohn Kanade MUG

XY Positions 82.87 85.52
Gabor Wavelets 88.59 88.76
MR_Poly 89.09 90.01
LBP based method [SGM09] 95.52 91.02
SR_Poly 89.81 91.52

Figure 7.5 Comparison of proposed approaches with other methods in terms of classification
accuracy using annotated points

Methods
Classification Rates(%)

Cohn Kanade MUG

XY Positions 92.80 91.02
Gabor Wavelets 85.85 91.26
MR_Poly 92.55 92.76
LBPH similar to [SGM09] 96.76 94.01
SR_Poly 92.05 94.25

Figure 7.6 Comparison of proposed approaches with other methods in terms of classification
accuracy using normalized annotated points

Regarding the XY positions our results differ from the one presented in [ZLSA98], where

Gabor wavelets perform better than just XY positions. This is explained by the fact that our
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Methods
Execution times(ms)

Feature extraction Classification

XY Positions ≈ 0 0.539
Gabor Wavelets 19.637 6.810
MR_Poly 5.575 7.303
LBPH similar to [SGM09] 0.673 30.071
SR_Poly 0.411 1.420

Table 7.5 Comparison of proposed approaches with other methods in terms of execution
times.

XY position are normalized by GPA, hence they are likely to give better results than Gabor

wavelets.

Comparing our multiresolution polynomial approach to the one using Gabor wavelets, our

method gives better performance results both in terms of accuracy as in terms of computation

time. However, because the multiresolution polynomial approach implies the computa-

tion of coefficients which are unlikely to be relevant for classification, we will prefer a

single-resolution method with coefficients pre-selections. As it turns out, multi-resolution

decompositions are better for applications such as lossy compression or denoising than they

are for classification.

It can be also observed that in comparison to the LBP based method while we obtain

a slightly inferior precision (≈ 2%), our method appears to be much better in terms of

computation times (over twenty times faster). The length of the feature vector extracted by

LBP histograms is more substantial (59 uniform patterns for each fiducial point) so in terms

of classification this method is time consuming.

7.3.4 Comparative Study with other methods on calculated point with

AAMs

We decided next to perform classification tests on images where key points were calculated

with one of our algorithms using polynomials. We have chosen to use CDAAM method

keeping 5% of polynomial coefficients for texture representation in the alignment algorithm.

It should be noticed that this methos does not estimate the best keypoints (in comparison to

Newton polynomial approach) but is very fast. Classification rates for the 5 approaches are

presented in Figures 7.7 and 7.8.

It can be seen that using calculated points classification rates are extremely decreased

for the approach using XY positions as feature and Gabor Wavelets. This can be explained
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Methods
Classification Rates(%)

Cohn Kanade MUG

XY Positions 57.34 65.58
Gabor Wavelets 52.58 72.82
MR_Poly 65.96 80.29
LBPH similar to [SGM09] 83.58 86.78
SR_Poly 66.95 85.04

Figure 7.7 Comparison of proposed approaches with other methods in terms of classification
accuracy using calculated points

Methods
Classification Rates(%)

Cohn Kanade MUG

XY Positions 58.34 61.84
Gabor Wavelets 51.65 72.58
MR_Poly 72.66 83.05
LBPH similar to [SGM09] 96.76 88.51
SR_Poly 92.05 86.29

Figure 7.8 Comparison of proposed approaches with other methods in terms of classification
accuracy using normalized calculated points

by the small errors in image alignement that have a substantial significance for expression

classification. Multi resolution approach using polynomials, that is comparable to Gabor

wavelets present better results but have still not acceptable rates. The best outcome is obtained

using LBPH method and in the normalized case followed closely by the SR_Poly approach.

Considering the classification rate and the calculation times for feature extraction and

classification the SR_Poly approach can be considered as the one giving the best compromise.

7.4 Discussion and conclusion

In this chapter, we have proposed a new method of using coefficients obtained by polynomial

projections for recognition of expressions from still face images.

We have shown that polynomial multi-resolution decomposition allows hierarchical

organization of image information within the frequency domain. As a result, polynomial co-

efficients can be used as an efficient alternative to global or redundant texture representations

such as Gabor Wavelets, without losing accuracy. Because polynomials in the complete basis

are orthogonal, it is possible to compute the coefficients directly by a simple inner product of
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polynomials with the image. In multi-scale complete basis decompositions, while perfect

reconstruction of the original signal can be obtained using a full set of coefficients, scalable

approximation is also possible, by restricting reconstruction to a reduced set of coefficients,

resulting in a fully scalable process.

Experimental results confirm that our approach performs well with face expression

recognition, giving high accuracy results and being computationally efficient when facial key

points are manually labelled or calculated via an alignement algorithm.



Chapter 8

Conclusion

In this thesis we explored novel techniques to use polynomial projection basis for facial

analysis. Our work was motivated by the objective of proposing new facial texture represen-

tations to improve Active Appearance Models rending them robust to various factors such as

physiognomies, illumination effects or poses.

In section 4.2, we show two approaches of using polynomial coefficients as a texture

representation in active appearance models. The methods show that it is possible to achieve

good alignment results without using global or redundant texture representations such as

PCA on pixel intensities or Gabor wavelets. By construction, the polynomials in the complete

basis are orthogonal and hierarchically organized, allowing fast computation and precise

localization of facial landmarks. The resulting approaches are tested on various datasets

and experimental results show that our approaches perform very well with face alignment

algorithms and depending on the chosen method we obtain robustness to pose changes or

facial expression changes.

To reduce the model complexity the proposed framework is then extended to image

compression (section 4.3). The contributions at this level are twofold. First, we show

how polynomial compression can be integrated into the AAM framework. This type of

texture representation is multi-scale and can be used for analysis/synthesis at any given

scale (provided by the polynomial degree). The selection of the strongest energy coefficients

allows very stable alignment results even for high compression ratios and a good quality

of the synthesized images. This shows the capacity of polynomial coefficients to represent

an image in a sparse and compact manner. Second, in order to benefit of the great speed

and accurate results of the regression based facial alignment approaches we include the

approximation coefficients in a regression iterative framework. By conducting an experiment

using seven compression ratios we demonstrated that the polynomial representation offers
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advantages over the traditional Haar and CDF 9/7 wavelet in terms of synthesis quality and

accuracy.

In Chapter 5, we take advantage of the polynomial property stating that multiresolution

polynomial decomposition approach is equivalent to a filter bank , allowing to use the projec-

tion coefficients in a gradient descent algorithm. By reformulating the inverse compositional

algorithm to entertain fitting across multiple filter responses and using first and second order

polynomials, we adapt the Gauss-Newton and Newton algorithms. The method is tested on

different datasets and the gain provided by the use of polynomials is substantial for all of

them and overcomes the small extra time spent for polynomial projections. To our knowledge

the proposed approach is the first unified solution dealing with gradient descent and texture

representation into a single consistent model.

Considering that polynomial bases have been used to detect and characterize singularities

in a vector field in Chapter 6 we propose to use them for an accurate keypoint localization

in the image domain. The proposed algorithm consists in the calculation of a vector field

followed by the research on interesting points, both presented in the context of multi-scale

and multi-resolution scheme. The approach is extensively tested on the Oxford dataset and

our approach is showed to be robust to scale, illumination and blur changes. Furthermore

we use the selected regions by our detector in an AAM using a sparse texture model that

demonstrates the quality of the selected keypoints.

In Chapter 7, we explore the use of the polynomial representation for extracting informa-

tion about facial expressions. The main idea is to use as descriptor the polynomial projections

around facial keypoints that are hand-labbeled or directly calculated by one of our previous

AAM algorithms. Experimental results confirm that our approach performs well with face

expression recognition, being computationally efficient and giving high accuracy results.

8.1 Perspectives

The perspectives regarding the work presented in this thesis can be divided in short term and

long term objectives. In the short term, many improvements can be considered:

• Regarding the Chapter 4.2 a hybrid approach combining the two proposed methods

can be developed to improve the fitting accuracy when the database presents variations

both in pose and identity.

• Estimating the necessary degree of polynomials when using the polynomial texture

representation. The size of the polynomial basis should be computed to limit the size of
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the detected faces to avoid computational cost while giving the same accuracy results

as the one presented above.

• Identifying the appropriate appearance descriptors for the Chapter 6, where we detect

interest keypoints. Since the majority of image detectors comes with an adapted

descriptor, we believe that providing a specific polynomial descriptor can greatly

improve the matching experiments.

• Further testing of the proposed approaches for into-the-wild databases. A crucial point

is to identify the best approach to be used with uncontrolled environments.

In the long term, there are more challenging objectives that naturally derive from this

work:

• Exploring the possibility of extending the AAM model to color or multispectral images

using color based polynomials namely Hypercomplex 2D polynomial basis. Compared

to complete bases the hypercomplex polynomial transform has an extra parameter µ ,

a unit imaginary quaternion which corresponds to a privileged direction of analysis.

Typically µ is the unit quaternion giving the gray axis, but for multi channel images this

direction is calculated via Principal Component Analysis. The color pixels correspond

to a 3D point clouds whose structure reflects the colors. The shape of this point cloud

can be approximately captured with a 3D ellipsoid whose axis are the eigenvectors of

the covariance matrix of the points cloud (i.e. of the pixels). The ellipsoid direction

are obtained with a eigen decomposition of the symmetric covariance matrix. In

the Hypercomplex polynomial decomposition, the local direction is the eigenvector

associated with the higher eigenvalue.

• Finally a clear direction still left is exploring the use of 3D polynomial bases for 3D

deformable models. Polynomial bases can be used for optical flow estimation therefore

a model describing the texture and motion must be developed within a 3D AAM model.
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