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1.1. Equations aux dérivées partielles non linéaires

1.1 Equations aux dérivées partielles non linéaires

Comparé aux équations aux dérivées partielles linéaires, les équations aux dérivées
partielles non linéaires sont plus difficiles a analyser, tant du point de vue théorique
que du point de vue numérique. Les modeles de séparation de phase et les systemes
micro-électro-mécaniques (abbr. MEMS) sont deux problémes non linéaires qui peuvent
étre singuliers (lorsque I’on considere un potentiel logarithmique dans le modeles de
séparation de phase).

1.1.1 Modeles de séparation de phase

Les équations de Allen-Cahn et de Cahn-Hilliard sont les deux principales équa-
tions qui modélisent la séparation de phase. L’équation de Allen-Cahn a été introduite
par Allen et Cahn dans [4] pour décrire 1I’ordonnancement des atomes dans les solides
cristallins. De plus, Cahn et Hilliard ont proposé 1’équation de Cahn-Hilliard dans [20]
pour décrire le phénomene de séparation de phase (comme par exemple la décompo-
sition spinodale ou la coalescence) dans les alliages binaires (voir aussi [43], [44] et
[108]). Ces deux équations sont fondamentales en sciences des matériaux et sont basées
sur I’énergie libre de Ginzburg-Landau, qui s’écrit :

Wg = f (%|Vu|2 + F(u))dx, a > 0, (1.1)
Q

ou u représente le parametre d’ordre, comme par exemple la concentration (relative,
généralement considérée entre -1 et 1) de I’un des deux composants de 1’alliage, « est
un coeflicient de tension de surface, F' est un potentiel a double puits et Q2 est le domaine
occupé par le systetme (on suppose le domaine borné et régulier, de frontiere I'). Ces
modeles sont supposés isotropes, et a température constante. L’équation de Allen-Cahn,
qui correspond a un flot de gradient en norme L? de 1’énergie libre, s’écrit :

ou

e
ou f est la dérivée du potentiel a deux puits F, alors que I’équation de Cahn-Hilliard,
qui correspond a un flot de gradient dans la norme H~', s’écrit :

aAu+ f(u) =0, (1.2)

% +aAu—Af(u) = 0. (1.3)

Conditions aux limites. Parmi les différents choix de conditions aux limites, les condi-
tions de Dirichlet signifient que la condition sur la frontiere est fixée, alors que les
conditions au bord de type Neumann impliquent qu’il n’y a pas de perte de masse a tra-
vers la frontiere, et par conséquent, entrainent une conservation de la masse. On trouve
aussi les conditions aux limites mixtes, combinaisons entre les conditions de Dirichlet
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et de Neumann, ou les condition périodiques. Ces dernieres, appliquées a des domaines
réguliers de type parallélipede, signifient que les conditions sur deux murs opposés sont
les mémes, et ont des valeurs opposées dans la direction des vecteurs normaux orientés
vers ’extérieur du domaine. Plus récemment, des études sont effectuées avec des condi-
tions aux limites dynamiques (cf. [28], [82] and [138]), qui impliquent les dérivées en
temps de I’inconnue u.

Terme non linéaire. Les deux puits du potentiel correspondent aux deux phases du ma-
tériau. Un potentiel pertinent d’un point de vue thermodynamique, dérivant de modeles
a champs moyens (cf., [20] and [36]), est le potentiel logarithmique de la forme

) P 1 1
H@:%U—f}hﬁﬂ+@hh§%+ﬂ—ﬂm(2%Luﬂ4JLO<b<A,
(1.4)
donc,
L1
F(s) = s+ 2n—2, (1.5)
2 1-—3s

ou A4, et A, sont respectivement proportionnels a la température critique et a la tempé-
rature absolue, supposées constante pendant le processus. De plus, la condition 4, < 44
garantit que F possede un double puits et donc que la séparation de phases peut se pro-
duire. Un systeme de champs de phase basé sur la loi de conduction de la chaleur de
Maxwell-Cattaneo et avec un potentiel logarithmique a été étudié dans [92], alors que
les auteurs dans [26] ont étudié 1’équation de Cahn-Hilliard-Bertozzi-Esedoglu-Gilette
avec une nonlinéarité logarithmique, pour laquelle ils ont obtenu I’existence de solutions
locales (en temps) et ont proposé des applications pour la retouche d’images binaires.
Voir [29], [30], [70], [94], [96], [99] et [102] pour plus de détails.

Le potentiel logarithmique, pertinent d’un point de vue thermodynamique, est sou-
vent approché par un potentiel polynomial, qui s’écrit

ng:%ﬁ—w, (1.6)

et

f(s) =5 —s. (1.7)

Anisotropie. Lorque ’on tient compte du caractere anisotrope des interfaces, d’un
point de vue physique, une anisotropie importante pourrait entrainer que 1’énergie sur-
facique devienne si large ou singuliere selon certaines orientations que ces orientations
pourraient disparaitre dans la forme d’équilibre pour atteindre une énergie bien définie
pour le systeme. En conséquences, I’interface a 1’équilibre peut devenir non lisse, et des
facettes ou des coins peuvent apparaitre.

4
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Ficure 1.1 — Le potentiel logarithmique et le potentiel polynomial.

L’ anisotropie jouant un role important dans I’équilibre et la dynamique de I’inter-
face, plusieurs travaux ont porté sur ce point. Dans son article (cf. [80]), R. Kobayashi a
étudié la croissance cristalline anisotrope pour deux phases (liquide et solide) pour une
énergie libre de type Ginzburg-Landau modifiée. L’ anisotropie est prise en compte dans
la mobilité de I’interface, fonction de ’orientation. Dans cet article, de nombreuses
simulations numériques illustrent les effets de 1’anisotropie, notamment la croissance
dendritique et de type flocon de neige.

Une autre modification de I’énergie libre de type Ginzburg-Laudau permet de prendre
en compte 1’anisotropie, la différence avec le modele précédant étant que la température
est omise, (cf. [40], [120], [126] et [133]). L’anisotropie est prise en compte par la fonc-
tion énergie interfaciale y(n) qui dépend de 1’angle de la tangente a I’interface. Taylor
et Cahn (cf. [126]) donnent une idée générale de 1I’étude du mouvement d’une interface
diffuse avec des coins et des faces et le travail de Sekerta (cf. [120]) donne une idée de
I’étude des formes a 1’équilibre, ainsi que des criteres analytiques pour les orientations
manquantes des formes a 1’équilibre en dimension trois. Wise et al (cf. [133]) et Shen
et al. (cf. [40]) ont effectué 1’analyse numérique et des simulations pour ces modeles
anisotropes en se basant sur une régularisation du probleme.

Dans la these, on introduit I’anisotropie d’une maniere encore différente, en considé-
rant I’énergie libre de type Ginzburg-Landau d’ordre élevé, introduite par G. Caginalp
et E. Esenturk dans [23] et qui s’écrit :

1 k
y = f (= a ) D%ul> + F(u)dx, k € N, (1.8)
wa= [G3 3

i=1 |a|=i

olt @ = (ki, ky, k3) € (N U {0})°,
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|a|:k1+k2+k3

et, pour a # (0,0, 0),

N ol

= o kiadoa ks
ﬁxl 8x2 (')x3

(on admet que D®*Yy = y). On remarque que dans (1.8), la température est omise.
L’avantage est que ce type d’énergie libre permet de calculer I’anisotropie de maniere
explicite, en supposant que les tensions de surface sont différentes suivant les différentes
orientations. On note alors que 1’équation de Cahn-Hilliard d’ordre élevé anisotrope
correspond au flot de gradient dans la norme H~! de I’énergie libre (1.8) et s’écrit :

au : i 04
i A;(—n D anD*u— Af() =0.

lal=i

Généralisation. En plus de la séparation de phase, 1I’équation de Cahn-Hilliard et ses va-
riantes sont aussi utilisées pour modéliser d’autres phénomenes, tels que la dynamique
de populations (cf. [31]), la croissance tumorale (cf. [7] et [86]), les films bactériens
(cf. [81]), les couches minces (cf. [112] et [129]), la retouche d’image (cf. [8], [9], [21],
[27] and [42]) et méme les anneaux de Saturne (cf. [130]) et I’agglomérat de moules
(cf. [90]).

En particulier, plusieurs de ces phénomemes peuvent étre modélisés par 1’équation
de Cahn-Hilliard généralisée suivante :

ou
ot
Nous renvoyons le lecteur a [93] et [98] ( voir aussi [7], [26], [37], [47]) pour des études

détaillées de 1’équation (1.9). Etant donné que nous nous intéressons ici aux modeles
d’ordre élevé, I’équation suivante sera utilisée :

+ A'u— Af(u) + g(x,u) = 0. (1.9)

8 g
a—bt‘ - A;(—l)’ > @D u = Af(u) + g(x,u) = 0. (1.10)

|lal=i

Cette équation est basée sur 1’énergie libre (1.8) mentionnée ci-dessus. Dans (1.10), a
représente le multi-indice et le potentiel f est supposé€ non linéaire mais régulier. En ce
qui concerne la fonction g, plusieurs choix sont possibles :

(1) Equation de Cahn-Hilliard-Oono. Dans ce cas,

g(x,s) = g(s) = Bs, > 0.



1.1. Equations aux dérivées partielles non linéaires

Cette fonction a été proposée dans [111] pour prendre en compte les interactions de
longue portée (i.e., non locales ), mais aussi pour simplifier les simulations numériques.
Mentionnons aussi que dans [39], les auteurs ont utilisé une équation similaire a celle de
I’équation de Cahn-Hilliard-Oono, pour des applications concernant 1’aggrégat de copo-
lymeres diblocs, en dessous d’une température critique. Pour plus d’études sur I’équa-
tion de Cahn-Hilliard-Oono, voir aussi [15], [38], [95], [131] et [7].

(i1) Terme de prolifération. Dans ce cas,

8(x, ) = g(s) =ps(s = 1), p>0.

Cette fonction a été introduite dans [86] en vue d’applications a la biologie et, plus
précisément, pour modéliser la cicatrisation et la croissance tumorale (en dimension 1
d’espace) et I’agglomérat de cellules cancéreuses dans le cerveau (en dimension deux
d’espace) ; voir aussi [7] pour le choix d’un polyndme de degré 4 pour g.

(i11) Terme de fidélité. Dans ce cas,

2(x, 8) = doxap(X)(s — e(x)), g >0, D C Q, ¢ € LX(Q),

ou y est la fonction indicatrice et Ay est un réel positif. Cette fonction a été proposée
dans [8] et[9] pour des applications en retouche d’images. Dans ce cas, ¢ est une image
binaire, et D est la zone endommagée (2 retoucher), de I’'image. Le terme de fidélité
g(x,u) est ajouté a I’équation dans le but de garder la solution proche de 1’image ori-
ginale hors de la zone a retoucher. L’idée de la méthode consiste a résoudre 1’équation
jusqu’a I’état d’équilibre. La solution u obtenue est alors la solution restorée de I’image
@(x).

Hyperbolic relaxation. Une relaxation hyperbolique de 1’équation de Cahn-Hilliard
a été proposée dans [55], dans le but de modéliser la solidification rapide d’un alliage
binaire. De plus, S. Gatti et al. ont proposé dans [62] une analyse détaillée du comporte-
ment asymptotique des solutions dans le cas de la relaxation hyperbolique de I’équation
de Cahn-Hilliard en dimension un.

P. Stefanovic et al. ont proposé dans [123] I’équation appelée “modified phase field
crystal equation” (abbr., MPFC), faisant la distinction entre les échelles de temps ca-
ractéristiques de la relaxation élastique (rapide) et la diffusion (plus lente), mais sans
prendre en compte I’anisotropie. Cette équation s’écrit :

Byt + du — A[A*u + 2Au + f(u)] = 0. (1.11)

Dans [75] et [76], M. Grasselli et H. Wu ont établi le caractere bien posé de I’équation
MPEFC (1.11), ainsi que I’existence d’un attracteur exponentiel, dans le cas de conditions
aux limites périodiques. De plus, dans [72], M. Grasselli et M. Pierre ont proposé un
schéma de discrétisation en espace, et un schéma de discrétisation en temps et en espace
pour le modele MPFC, et ont notamment établi la convergence de la solution discrétisée
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vers la solution exacte de I’équation MPFC, ainsi que la convergence de la solution
approchée vers une solution stationnaire lorsque le temps tend vers +oo. Nous référons
le lecteur a [135], [136] pour plus de schémas numériques appliqués a 1’équation MPFC
et a [45], [50], [56], [79] pour I’étude théorique et numérique de I’équation de phase-
field crystal (sans le terme de relaxation).

Pour tenir compte des effets de I’anisotropie dans 1’équation MPFC, 1’équation est
modifiée et devient, pourk € N,k >2, x€ Qc RY (d = 1,2, 3),

k
o+ 0 =AY (=1) > a,D*u— Af(u) = 0. (1.12)
i=1

lal=i

On considere également la relaxation hyperbolique des équations de Cahn-Hilliard gé-
néralisées, d’ordre élevé et anisotropes, qui s’écrivent :

k
o+ =AY (=1) " a,D™u = Afu) + yu =0, (1.13)

i=1 la|=i

ou y > 0. Munie du terme yu, I’équation (1.13) tient compte des interactions de longue-
portée.

1.1.2 Modélisation mathématique de MSEM

Une autre équation aux dérivées partielles non linéaire apparait dans la modélisation
mathématique de micro-systemes électro-mécaniques (MSEM en abrégé) tels que, par
exemple, les micro-pompes, les micro-interrupteurs, les micro-valves, ..., cf. [114]. Un
MSEM idéalisé est présenté dans la Fig. 1.2. Le dispositif contient une membrane dé-
formable élastique mince fixée a ses bords et une plaque électrique rigide parallele sur
le sol. La surface supérieure de la membrane, en principe diélectrique, est recouverte
d’un film conducteur métallique d’épaisseur négligeable. Lorsque qu’une tension est
appliquée au film conducteur, le membrane élastique se déforme vers la plaque rigide.
L’action du systeme S consiste en 1’énergie cinétique Ey, 1’énergie d’amortissement E,
et I’énergie potentielle E,, a savoir, si £ désigne la Lagrangien,

5]
S= f Ldx'dy'dt’ .= Ex+ E; + E,, (1.14)
I3 Q
ou Q' représente le domaine de la membrane. D’un c6té, on applique le principe de
Hamilton pour minimiser I’action S, et on obtient un probleme élastique. Combinant les
effets électrostatiques, une adimensionalisation et certaines hypotheses raisonnables, un
probléme parabolique non linéaire est obtenu, qui s’écrit :

8
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Elastic membrane with
conducting film and
supported boundary

3 )

X’

Fixed ground
electric plate

FiGure 1.2 — MSME idéalisé.

0
A Aw = Af(x) in Q,
ot w? (1.15)
w(t,x)=1 on 0Q; w0,x)=1 in Q,
ou w représente la déviation dynamique adimensionalisée, et f(x) décrit la permittivité

diélectrique variable de la membrane é€lastique. Nous renvoyons le lecteur a [46] pour
les détails de la dérivation du modele.

1.2 Problemes et principaux résultats

On étudie dans cette these plusieurs équations aux dérivées partielles non linéaires,
telles que les modeles de séparation de phase d’ordre élevé, associés ou non a de 1’ aniso-
tropie, ainsi qu’une équation aux dérivées partielles singuliere issue de la modélisation
mathématique de systemes micro-électromécaniques.

1.2.1 Modeles d’ordre élevé pour la séparation de phase

On considere dans les chapitres 3 et 4 les modeles d’ordre élevé pour la séparation
de phase, telles que les équations de Allen-Cahn et de Cahn-Hilliard d’ordre élevé qui
s’écrivent :

% + P(—A)u + f(u) =0, (1.16)
et P
a—bt‘ — AP(=A)u — Af(u) = 0, (1.17)
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respectivement, avec
k

P(s)= ) ais'. (1.18)
i=1
Les équations (1.16) et (1.17) sont d’ordre élevé en raison du terme P(—A), ce qui les
rend difficiles a étudier. Le probleme sera encore plus difficile a étudier si la nonlinéarité
f(u) est logarithmique. Les conditions aux limites associées a (1.16) et (1.17) sont :

u=Au=..=A"'"u=0o0nT, (1.19)

et la condition initiale :

I/t|t:0 = Uy. (120)

Dans le chapitre 3 nous étudions les équations d’ordre élevé de Allen-Cahn (1.16)
et de Cahn-Hilliard (1.17) avec un potentiel polynomial et les conditions aux limites
(1.19) et donnons pour ces deux problemes des résultats d’existence et de régularité de
solutions. Plus précisément, nous définissons H"(Q) ={v € H™(Q),v = Ay = -+ =
ATy = 0 sur I'}, ou le symbole [-] représente la partie entiere. Pour 1’équation de
Allen-Cahn d’ordre élevé, nous obtenons :

Théoréme 1.2.1. (i) On suppose que uy € H*(Q), avec fg F(up)dx < +oo lorsque k = 1.
Alors le probleme (1.16), (1.19)-(1.20) possede une unique solution « telle que, YT > 0,
u € L*(R*; HY(Q)) N L*(0, T; H**(Q)), % e L*(0,T; L*(Q)) et

k
%«u, V) + Z] ai(=A)u, (=A)Iv)) + (f(w), ) = 0,¥v € CX(Q).

(i) Si on suppose de plus que uy € H*(Q), alors u € L*(R*; H*(Q)).

Ensuite on définit le semi-groupe associé et montrons sa dissipativité, ainsi que 1’exis-
tence de D’attracteur global qui est compact dans L*(Q) et borné dans H*(Q). Concer-
nant I’équation de Cahn-Hilliard d’ordre élevé, nous avons le résultat :

Théoréme 1.2.2. (i) On suppose que uy € H*(Q), avec fg F(up)dx < +oo lorsque k = 1.
Alors le probeme (1.17),(1.19)-(1.20) possede une unique solution u, ayant la régularité
u € L(R*; H(€)) N L*(0, T; H*()) and % € L*(0, T; H'(Q)) ;

(i) Si on suppose que uy € H**'(Q), alors u € L*(R*; H*(Q));

(iii) Si de plus on suppose que f est de classe C**!' et uy € H?(Q), alors u €
L*(R*; H*(Q)).

Puis nous obtenons la dissipativité du semi-groupe et I’existence de 1’attracteur global,
qui est de plus compact dans L*(Q) et borné dans H**(Q). De plus, nous expliquons
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comment adapter 1’étude pour traiter I’équation de Cahn-Hilliard d’ordre élevé associée
aux conditions aux limites de type Neumann homogene.

De plus, nous considérons au Chapitre 4 I’équation de Allen-Cahn d’ordre élevé
(1.16) avec le potentiel logarithmique (1.7) et obtenons des solutions variationnelles
dans un sens plus faible. Du fait de la singularité du potentiel, nous raisonnons comme
dans [104] et construisons une suite de solutions #" d’approximations régulieres du
probleme singulier. Dans le méme temps, nous définissons la solution variationnelle u
du probleme singulier, et prouvons son existence en montrant que la suite de solutions
u" converge (dans un certain sens) vers u. Plus précisément, nous avons le

Théoréme 1.2.3. On suppose que uy € HY(Q), avec —1 < uy < 1 a.e. x € Q. Alors,
pour f définie par (1.5), le probleme (1.16), (1.19) et (1.20) possede une unique solution
variationnelle u.

Puis nous définissons le semi-groupe et justifions I’existence de ’attracteur global qui
est compact dans L*(Q) et borné dans H**1(Q).

1.2.2 Modeles anisotropes d’ordre élevé

Les problemes anisotropes correspondant aux équations de Allen-Cahn et Cahn-
Hilliard d’ordre élevé, qui sont respectivement les L?— and H~' flots de gradient de
I’énergie libre de Ginzburg-Landau d’ordre élevé (1.8), s’écrivent

k
% + Z(—ni Z a,D*u+ f(u) =0 (1.21)
i=1 la|=i
et
ou g
= —AZ(—l)[Zaaﬂzau—Af(u) = 0. (1.22)
i=1 la|=i

Pour des raisons de simplicité, nous considérons au Chapitre 5 un potentiel polynomial
plutdt que le potentiel logarithmique. Les conditions aux limites et la condition initiale
sont données par :

Du=0onT, |of <k-1, (1.23)

Mlt:() = Uy. (124)

En résumé, nos résultats pour le probleme d’Allen-Cahn anisotrope et d’ordre élevé
sont :

11
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Théoreme 1.2.4. (i) On suppose que u € H’S(Q). Alors, (1.21), (1.23)-(1.24) possede
une unique solution faible u telle que, VT > 0, u € L™(R*; H5(Q)) N L*(0, T; H*(Q) N
HE(Q) et 2 € L*(0, T; L*().

(ii) Si on suppose de plus que uy € H*(Q) N Hi(Q), alors u € LY(R*; H*(Q) N
H(Q)).

A partir du théoreme précédent, on définit le semi-groupe associé au probleme (1.21)
et on montre que le semi-groupe est dissipatif dans H*(Q) N Hy(Q). On déduit en-
suite I’existence de I’attracteur global, compact dans Hg(Q) et borné dans H*(Q). Nous
présentons également des simulations numériques pour le probleme de Allen-Cahn ani-
sotrope et d’ordre élevé avec des conditions aux limites périodiques, illustrant I’aniso-
tropie du modele.

Théoreme 1.2.5. (i) On suppose que u, € H’g(Q). Alors le probleme (1.22), (1.23)-
(1.24) possede une unique solution faible u telle que, VT > 0, u € L*(R"; Hg(Q)) ol
L*0,T; H*(Q) n HS(Q)) et % e L2(0,T; H'(Q)).

(ii) Si de plus on suppose que uy € H*'(Q) N H(Q), alors, YT > 0, u € L¥(R*;
HH1(Q) 0 HAQ)) et 2 € L2(0, T; LX(Q).

(iii) Si de plus on suppose que f est de classe C**! et uy € H*(Q) N H(Q), alors
ue L°(R*; H*(Q) N HS(Q))

On définit ensuite le semi-groupe associé et on montre qu’il est dissipatif dans H*(Q)N
HS(Q), et on obtient I’existence de I’attracteur global, qui est compact dans Hg(Q) et
borné dans H**(Q).

1.2.3 Equations de Cahn-Hilliard généralisées d’ordre élevé

Dans le Chapitre 6, nous étudions les équations de Cahn-Hilliard généralisées d’ordre
élevé introduites dans (1.10) et rappelées ci-dessous :

k
% —A Z(-l)i Z a,D*u — Af(u) + g(x,u) = 0. (1.25)
i=1 la|=i
DU=0onT, |[a| <k-1, (1.26)
I/tlt:() = Uy. (127)

Nous considérons uniquement le cas k > 2, puisque le cas k = 1 peut étre traité comme
dans [93]. En ce qui concerne I’étude théorique, nous obtenons des estimations a priori,
et la régularité de I’unique solution, a savoir :

12
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Théoreme 1.2.6. (i) On suppose que uy € HS(Q). Alors, (1.25)-(1.27) possede une
unique solution faible u telle que, YT > 0, u € L¥(R*; H{(Q)NL*(0, T; H*(Q)NH(Q))
et % e L*(0,T; H' ().

(ii) Si on suppose de plus que uy € H**'(Q) N H(Q), alors, YT > 0, u € L¥(R*;
HYY Q) N HE(Q) et 2 € LX(0, T; LA(Q)).

(iii) En supposant de plus que f est de classe C**!, que g(x, s) = g(s), avec g de
classe C*! et que uy € H*(Q) N Hi(Q), on obtient u € L (R*; H*(Q) N Hi(Q)).

Nous définissons alors le semi-groupe et montrons qu’il est dissipatif dans H*(Q) N
HS(Q). On en déduit I’existence de I’attracteur global, qui est compact dans HS(Q) et
borné dans H*(Q). Dans la partie numérique de 1’étude, nous choisissons différentes
fonctions g, et proposons divers résultats numériques correspondant notamment aux
solutions de 1’équation de Cahn-Hilliard-Oono, et a celles de I’équation décrivant la
croissance tumorale.

1.24 L’équation modifiée de Cahn-Hilliard anisotrope d’ordre élevé

On considere au Chapitre 7 une équation modifiée (relaxation hyperbolique) de
Cahn-Hilliard anisotrope d’ordre élevé qui s’écrit, pour k € N, k > 2, x € Q c R?
d=1,2,3),

k
o+ =AY (=1 " a,D*u - Af(u) = 0 (1.28)

i=1 |ov|=i

uli=o = uo; Usli=o = vo. (1.29)

On raisonne comme dans I’article de Grasselli et Wu pour I’équation MPFC (cf. [75]
et [76]), la difficulté étant d’étendre leurs résultats a I’équation (1.28), comportant de
I’anisotropie et des termes d’ordre élevé. Néanmoins, dans le cas de conditions aux
limites périodiques, on obtient :

Théoréme 1.2.7. (i) Pour toute condition initiale (ug,vo) € Hy(Q) X H'(Q), le pro-
bleme (1.28)-(1.29) possede une unique solution faible (u,u,) telle que, V T > 0,
u € L™(R*; HX(Q)) et u, € L2(0, T: H-'(Q)).

(ii) Si on suppose de plus que (ug,vo) € (H*'(Q) N Hy(Q)) X L*(Q), alors u €
L®(R*; H*(Q) n H/(;(Q)) et u, € L*(0,T; L*(Q)).

(iii) Si on suppose de plus que f est de classe C**! et que (up,vo) € (H*(Q) N
HS(Q)) x H1(Q), alors u € (L*(R*; H**(Q) N HS(Q)) et u, € L*(0,T; H1(Q)).

On peut donc définir le semi-groupe associé et montrer que celui-ci est dissipatif dans
H’S(Q) N H~'(Q). On en déduit I’existence de I’attracteur global, qui est compact dans
H’g(Q) NH~'(Q). De plus, au Chapitre 8 nous proposons des schémas numériques, basés
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sur la méthode des éléments finis ou sur une méthode spectrale pour la discrétisation en
espace, et sur un schéma d’ordre 2 pour la discrétisation en temps, pour 1’équation (1.28)
avec un terme additionnel yu, qui s’écrit :

k

ﬁ&m4wiu—AESGJYZSa@Dwu—AfW)+yu:0. (1.30)

i=1 la|=i

Nous obtenons des résultats d’existence pour la solution numérique, et des résultats de
stabilité basés sur I’énergie pour le schéma semi-discrétisé (en espace) comme pour le
schéma entierement discrétisé. Des simulations numériques illustrent et confirment ces
résultats.

1.2.5 Modeles MSEM

Au Chapitre 9, nous étudions le probléme parabolique micro-systemes électro-mécanique
(MSEM) suivant :
ou Af(x) )
—-Au=—"—= Q,
o M T w1 (1.31)
u(t,x) =0 on 0Q; u(0,x)=0 in Q,

(voir [46] et [114] pour plus de détails). Le probleme elliptique associé s’écrit :

WL (GO N
(1 —u)? (1.32)
u(x)=0on 0Q; 0<u<l in Q,

avec u = 1 —w (w a été introduit dans (1.15)) et représente la distance adimention-
nalisée entre la plaque et la membrane, f décrit le profil diélectrique de la membrane
élastique et 4 > 0 représente la tension appliquée. On propose des méthodes numé-
riques stables pour résoudre le probleme (1.31) et on discute I’influence de la valeur de
A sur la solution. Plus précisément, on construit un schéma semi-discrétisé (en temps)
et semi-implicite : Pour 7 > 0 donné, t, = nt,n =0, 1, -- -,

A
Upy1 — TAun+l = Uy + lx:)z in »
(1 -u,) (1.33)
u,+1 =0 on 0Q,
ainsi qu’'un schéma semi-discret et implicite :
Atf
Upe1 — TAUp 1 = U, + ————— in Q,
" " (I = tty1)? (1.34)

u,+1 =0 on 0Q,
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avec U,y = u(tye1,x), U, = u(t,, x) et up la condition initiale. On note u, 1’unique
solution minimale du probleme (1.32), et A* la tension de traction.
En supposant que A4 < A%, nous avons le résultat suivant pour le schéma (1.33) :

Proposition 1.2.1. (i) Pour tout n € N U {0}, on a 0 < u,(x) < uy(x), a.e. x € Q; en
particulier, pour tout n € N U {0}, u, existe et satisfait 0 < u,(x) < 1, a.e. x € Q.

(ii) Si on suppose ; +1CUT (1 + (12_/1;)3) < 1, ont, ¢y > 0 est la constante optimale dans
I’inégalité de Poincaré, alors u, converge vers u, dans L*(Q) lorsque n — +co.

(iii) Si la condition initiale vérifie O < uy < u,, la solution numérique u,, est crois-
sante et bornée par u, ; de plus, sous [’hypothese 1 < A%, le probleme elliptique possede
au moins deux solutions notées u,, et u, avec uy < u;. Si on choisit uy < uy < uj, alors

la solution u,, est décroissante et minorée par u,.

Concernant le schéma (1.34), on montre, sous certaines conditions, que u, converge
vers u, dans Hé (Q) lorsque n — +o00; en particulier, en 1D, u, converge vers u, dans
C(Q) lorsque n — +oo.

Toujours en 1D, on construit ensuite le schéma semi-implicite entierement discré-
tisé, qui peut s’écrire :

AU™ =U" + G(UY),

ol A est la matrice des différences finies, U"*! et U" sont les vecteurs solutions aux
(n + 1)ieme et nieme pas de temps et G est le vecteur associé au terme non linéaire. On
vérifie que, sous des hypothéses raisonnables, la solution numérique U"*! est majorée
et croissante, et donc converge. Finalement, des simulations numériques correspondant
a différentes conditions initiales et différentes valeurs de A, sont proposées, pour des
domaines € de dimensions 1 et 2.
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2.1. Nonlinear partial differential equations

2.1 Nonlinear partial differential equations

Compared to linear partial differential equations, nonlinear partial differential equa-
tions are more complicated to analyze both theoretically and numerically due to their
nonlinear nature. Phase separation models and the mathematical models of micro-electro-
mechanical systems (abbr. MEMS) are two representatives of nonlinear partial differen-
tial equations, which can be (when considering logarithmic potentials in phase separa-
tion) singular.

2.1.1 Phase separation models

The Allen-Cahn and Cahn-Hilliard equations are the main equations in phase sepa-
ration. The classical Allen-Cahn equation was originally introduced by Allen and Cahn
in [4] to describe the motion of anti-phase boundaries in crystalline solids. Besides,
Cahn and Hilliard established the Cahn-Hilliard equation in [20] to describe the com-
plicated phase separation (for example, spinodal decomposition) phenomena in a solid,
especially binary alloy (see also in [43], [44] and [108]) and coarsening. Both of these
two equations are central equations in material science and are based on the so-called
Ginzburg-Landau free energy, which reads

Yo = f (%|Vu|2 + F(u))dx, a > 0, 2.1)
Q

where u represents the order parameter, say, the concentration of one of the two me-
tallic components (usually being taken between -1 and 1), « is the surface tension, F
is a double-well potential and € is the domain occupied by the system (we usually set
the domain to be bounded and regular, with a boundary of I'). In this case, isotropy is
assumed and also a fixed temperature. The Allen-Cahn equation, which corresponds to
an L*-gradient flow of the Ginzburg-Landau free energy, then reads

ou
e alAu + f(u) =0, (2.2)

where f is the derivative of the double-well potential F', while the Cahn-Hilliard equa-
tion, which corresponds to an H~!-gradient flow, reads

% +aA*u—Af(u) = 0. (2.3)
Boundary conditions. Concerning the boundary condition of these models, the Diri-
chlet boundary condition indicates that the condition on the boundary is fixed, while the
homogenous Neumann boundary condition implies that no mass loss occurs across the
boundary walls, which can lead to mass conservation. There is a combination of the Di-
richlet and Neumann boundary conditions, which is called mixed boundary condition.
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The periodic boundary condition is often considered for a symmetric regular domain,
the conditions on two of the symmetric boundary walls are equal in value and oppo-
site in the direction of outer normal vectors. The authors in some references (see [28],
[82] and [138]) also study the Cahn-Hilliard equation endowed with dynamic boundary
conditions which involves the time derivative of dependent function u.

Nonlinear terms. The double-well potential F possesses two wells which correspond
to the phases of the material. A thermodynamically relevant potential F follows from a
mean-field model (see, e.g., [20] and [36]) and is a logarithmic function of the form

1 2 1 1-
F(s) = 3‘(1 ~ )+ 32[(1 + 5)1In( ; %)+ (1 = 5)In( . .ose(=1,1), 0< A, < Ay,
2.4)
therefore,
L1
fs) = —Ais+ 22, 2.5)
2 1—-3s

where A; and A, are respectively proportional to a critical temperature and the abso-
lute temperature, which is assumed to be a constant during the process. Moreover, the
condition 4, < A; ensures that F' has a double-well form and the phase separation can
occur. A phase-field system based on the Maxwell-Cattaneo heat conduction law with
a logarithemic nonlinearity was studied by the author in [92], while the authors in [26]
studied the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation with logarithmic nonli-
near terms in which they obtained the existence of local (in time) solutions and proposed
the applications to binary image inpainting. We refer the reader to [29], [30], [70], [94],
[96], [99] and [102] for more details.

The thermodynamically relevant potential is generally approximated by a polyno-
mial one, which reads

F(s) = i(sz - 1), (2.6)

and

f(s) =5 —s. (2.7)

We also note the resemblance and difference between the logarithmic potential and
the polynomial potential in Fig. 2.1. Both of the potentials have a double-well form ; the
wells of the logarithmic potential are at two values of s which are however distinct from
+1, while the wells of the polynomial potential are located exactly at +1. We also notice
that the wells of the logarithmic potential would approach to =1 when the absolute
temperature (or A,) is close to the critical temperature (or 4;). Under this circumstance,
the logarithmic potential gets well approximated by the polynomial one.
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—-—- Polynomial Potential |/
—— Logarithmic Potential i

15 -1 -0.5 0 0.5 1 1.5

FiGure 2.1 — The logarithmic potential and the polynomial potential.

Anisotropy. If we take anisotropy interfaces into account, from a physical point of
view, sufficiently strong anisotropy may cause the surface energy function to become
so large or singular on certain orientations that these orientations may disappear in the
equilibrium shape in order to achieve a well-defined energy for the system. As a re-
sult, the interface of equilibrium may become non-smooth curve, moreover facets and
corners may appear.

As anisotropy is an important factor in interface equilibria and dynamics, there has
been several works on it. In the work of R. Kobayashi (see [80]), the author conside-
red anisotropic crystal growth in two phase field (liquid and solid) based on a modified
thermodynamically relevant Ginzburg-Landau type free energy. The anisotropy was in-
troduced by assuming that the mobility of the interface was a function of orientation. In
this article, many numerical simulations illustrated anisotropy effects, including dendrite
growth and some snowflake-like patterns. Furthermore, one can find more thermodyna-
mically relevant anisotropic phase field models in the works of Wheeler and McFadden
et al (see [101], [132] and [134]).

Another approach to take anisotropy into account is to consider another modified
Ginzburg-Landau type of free energy, the difference compared to the former one is that
temperature has been omitted (see [40], [120], [126] and [133]). The anisotropy was
introduced by the interfacial energy function y(n), which depends on the tangent angle
on the interface. Taylor and Cahn (see [126]) provided a general outline of an analysis
of the motion of diffuse interfaces with sharp corners and facets and the work of Sekerka
(see [120]) gave an outline of the study of equilibrium shapes and also analytical criteria
for missing orientations on 3D equilibrium shapes. Wise et al (see [133]) and Shen et
al. (see [40]) provided some numerical analysis and simulations on these anisotropic
models based on the regularization of the problem.
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Chapitre 2. General introduction

We account for anisotropic phenomenon in a different way (compared to the above)
by considering a higher-order Ginzburg-Landau type of free energy, which was propo-
sed by G. Caginalp and E. Esenturk in [23] and reads

1 k
Y = f(— aal.Z)”ul2 + F(u)dx, k€ N, (2.8)
o= [A3

i=1 |al=i

where, for @ = (ky, ka2, k3) € (N U {0})3,

|C¥|:k1+k2+k3

and, for a # (0,0, 0),

|
o 0
- ki q ks q k3
0x'0x570x;

(we agree that D99y = y). We note that, in (2.8), the temperature has been omitted.
The advantage is that such a kind of free energy provides an explicit way to compute the
anisotropy by supposing that the surface tension being different on different orientations.
We then note that the higher-order anisotropic Cahn-Hilliard equation corresponds to the
H™!-gradient flow of the free energy (2.8) and reads

ou L ; N
i A;(—l) > aD*u - Af(u) = 0.

la|=i

Generalization. Despite phase separation, the Cahn-Hilliard equation and some of
its variants are also relevant to other phenomenon, such as, population dynamics (see
[31]), tumor growth (see [7] and [86]), bacterial films (see [81]), thin films (see [112]
and [129]), image processing (see [8], [9], [21], [27] and [42]) and even the rings of
Saturn (see [130]) and the clustering of mussels (see [90]).

In particular, several such phenomena can be modeled by the following generalized
Cahn-Hilliard equation :

ou
ot
We refer the reader to [93] and [98] (see also [7], [26], [37], [47]) for detailed studies

on equation (2.9). Since we focus on the higher-order models in this part, a higher-order
generalized Cahn-Hilliard equation will be taken into account, which reads

+ A'u— Af(u) + g(x,u) = 0. (2.9)

0 S
a—b; —A ;(—1)’ D anD*u = Af(u) + g(x, u) = 0. (2.10)

|a|=i
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2.1. Nonlinear partial differential equations

This equation is actually based on the free energy (2.8) which we mentioned above. In
(2.10), a denotes the multi-index and f is considered to be the regular nonlinear term.
As far as the function g is concerned, we have several assumptions on it, whereas these
assumptions are satisfied in the following cases.

(i) Cahn-Hilliard-Oono equation. In that case,

g(x,s) = g(s)=Bs, B> 0.

This function was proposed in [111] in order to account for long-ranged (i.e., nonlocal)
interactions, and also to simplify numerical simulations. We also mention that, in [39],
the authors considered a similar form of Cahn-Hilliard-Oono equation which has ap-
plications in describing the segregation between the subchains of a diblock copolymer
below a critical temperature. We refer the reader to [15], [38], [95], [131] and [7] for
more studies on Cahn-Hilliard-Oono equation.

(i1) Proliferation term. In that case,

g(x,5) = g(s) = Bs(s = 1), B> 0.

This function was proposed in [86] in view of biological applications and, more pre-
cisely, to model wound healing and tumor growth (in one space dimension) and the
clustering of brain tumor cells (in two space dimensions) ; see also [7] for other quadra-
tic functions.

(111) Fidelity term. In that case,

g(x, 5) = Aoxap(X)(s — 9(x)), g >0, D CQ, ¢ € L}(Q),

where y denotes the indicator function and A, is actually a large positive number. This
function was proposed in [8] and [9] in view of applications to image inpainting. Here, ¢
is a given (damaged) image and D is the inpainting (i.e., damaged) region. Furthermore,
the fidelity term g(x, u) is added in order to keep the solution close to the image outside
the inpainting region. The idea in this model is to solve the equation up to steady state
to obtain an inpainted (i.e., restored) version u(x) of ¢(x).

Hyperbolic relaxation. A hyperbolic relaxation of the Cahn-Hilliard equation has been
proposed in [55], in order to model rapid solidification of a binary alloy. Furthermore,
S. Gatti et al. provided in [62] a detailed analysis of the longterm properties of the
solutions for a hyperbolic relaxation of the one-dimensional Cahn-Hilliard equation in
the singular limit when the relaxation parameter goes to zero.

P. Stefanovic et al. proposed in [123] a so-called modified phase field crystal equa-
tion (abbr., MPFC) to distinguish between the elastic relaxation and diffusion time scale
without consideration of anisotropy, see also in [124], which reads

Buu + O — A[A*u + 2Au + f(u)] = 0. 2.11)
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Chapitre 2. General introduction

The MPFC equation incorporates both fast elastic relaxation and slower mass diffusion.
In [75] and [76], M. Grasselli and H. Wu proved the well-posedness and established
the existence of an exponential attractor for the MPFC equation (2.11) endowed with
periodic boundary conditions. Additionally, in [72], M. Grasselli and M. Pierre proposed
a space semi-discrete and a fully discrete finite element scheme for the MPFC model
and established their convergence to equilibrium both theoretically and numerically. We
refer the readers to [135], [136] for more numerical methods to solve the MPFC model
and [45], [50], [56], [79] for the theoretical and numerical study on the phase field
crystal model without a relaxation.

As far as the anisotropy is concerned, we take into account the anisotropic effect in
the modified phase field crystal equation, then the equation becomes, for k € N, k > 2,
xeQcRY(d=1,2,3),

k
B0y + Ot — A Z(—l)" Z aa D u — Af(u) = 0. (2.12)

i=1 lar|=i

We further consider the numerical approximations for a hyperbolic relaxation of the
higher-order anisotropic generalized Cahn-Hilliard models, which read

k
Bt + Ay — A Z(—Df Z a0 D*u — Af(u) + yu = 0, (2.13)
i=1

lal=i

where y > 0 and with the term yu, equation (2.13) can model, e.g., long-ranged interac-
tions.

2.1.2 Mathematical modeling on micro-electromachanical system

Another nonlinear partial differential equation has arisen in the mathematical mo-
deling of micro-electromachanical system (abbr.,, MEMS), for example, micropumps,
microswitches, microvalves, shuffle motor, etc., see [114]. An idealized machinery in
MEMS consists of the construction which is shown in Fig. 2.2. The device mainly
contains a thin and deformable elastic membrane with fixed boundary and a parallel
rigid ground electric plate. The upper surface of the membrane, which is normally
dielectric, is coated with a metallic conducting film and the thickness of the film is
considered to be negligible. When applying a voltage to the conducting film, the elastic
membrane deforms towards the ground plate. The action of the system S consists of the
kinetic energy Ey, damping energy E, and potential energy E,, namely, if we denote the
Lagrangian by £,

5]
S= f f Ldx'dy'dt .= E,+E;+E,, (2.14)
f Q'
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Elastic membrane with

conducting film and
supported boundary
7
d I
v
v

Fixed ground
electric plate

FiGure 2.2 — An idealized MEMS capacitor.

where ' denotes the domain of the membrane. On the one hand, we apply Hamil-
ton’s principle to minimize the action &, and obtain an elastic problem. Combining
the electrostatic effect, after the dimensionless analysis and under certain reasonable
assumptions, a nonlinear parabolic problem can be obtained, which reads

W pw=HD g

ot w? (2.15)

w(t,x)=1 on 9Q; w(0,x)=1 1in Q,

where w denotes the dimensionless dynamic deflection and f(x) describes the varying
dielectric permittivity of the elastic membrane. We refer the reader to [46] for the detai-
led derivation.

2.2 Problems and framework

We study in this thesis several nonlinear partial differential equations, including
higher-order models in phase separation endowed or without anisotropy and a typical
singular partial differential equation arising in the mathematical modeling of micro-
electromechanical system.

2.2.1 Higher-order models in phase separation

We consider firstly in Chapter 3 and Chapter 4 the higher-order models in phase se-
paration, namely, the higher-order Allen-Cahn and Cahn-Hilliard equations which read

% + P(=A)u+ f(u) =0, (2.16)
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and

% — AP(=A)u — Af(u) = 0, (2.17)

respectively, where
k

P(s) = Z as'. (2.18)

i=1

Due to P(s), (2.16) and (2.17) may possess higher-order nature, which is the main
difficulty to study both of them. Moreover, if the nonlinearity is the logarithmic one,
there will be some additional difficulty to deal with the nonlinear term. The boundary
condition is set to be

u=Au=..=A"'"u=0o0nT, (2.19)

and the initial condition is

=0 = Up. (2.20)

In Chapter 3 we work on the higher-order Allen-Cahn equation (2.16) and Cahn-
Hilliard equation (2.17) with a simplified double-well potential and discuss the regula-
rity results for both of the problems endowed with Dirichlet boundary condition (2.19).
More precisely, we set H™(Q) ={v € H"(Q),v = Av = --- = A"y = 0 on '}, where
[-] denotes the integer part, and for the higher-order Allen-Cahn equation, we obtain the

Theorem 2.2.1. (i) We assume that uy € H*(Q), with fQF(uo)dx < +oo when k = 1.
Then, the problem (2.16), (2.19)-(2.20) possesses a unique solution u such that, VT > 0,
u € L*(R*; HY(Q)) N L*(0, T; H*(Q)), ‘;—’t‘ € L*(0,T; L*(Q)) and

k
%«u, V) + Zl ai(=D)2u, (=A)3v)) + ((f(w), v)) = 0, ¥y € CZ(Q).

(ii) If we further assume that uy € H*(Q), then u € L*(R*; H*(Q)).

Thus, we define the semigroup and deduce the dissipativity of the semigroup, as well as
the existence of the global attractor which is compact in L>(Q) and bounded in H**(Q).
Furthermore, for higher-order Cahn-Hilliard equation, we have the

Theorem 2.2.2. (i) We assume that uy € H*(Q), with fQF(uo)dx < +oo when k = 1.
Then, the problem (2.17),(2.19)-(2.20) possesses a unigue solution u, u € L*(R*; H*(Q))N
L*(0,T; H*(Q)) and % € L*(0,T; H'(Q));

(ii) If we assume that uy € H**'(Q), then u € L*(R*; H*''(Q)) ;

(iii) If we assume that f is of class C**' and uy € H*(Q), then u € L*(R*; H*(Q)).
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Therefore, we derive the dissipativity of the semigroup and the existence of the global
attractor, which is also compact in L?(Q) and bounded in H*(Q). In addition, we give
some details in order to deal with the higher-order Cahn-Hilliard system associated to
the homogenous Neumann boundary condition.

Moreover, we consider the higher-order Allen-Cahn equation (2.16) with the loga-
rithmic nonlinear terms (2.7) in Chapter 4 and also discuss its regularity results in a wea-
ker sense. Due to the singularity of the nonlinearity, we perform as [104] to construct a
sequence of solutions #" under reasonable regular approximations of the singular pro-
blem. Meanwhile, we define the variational solution u to the singular problem, verify the
existence of u by proving that the sequence of solutions aforementioned are convergent
(in some sense) to the variational solution. More precisely, we have the

Theorem 2.2.3. We assume that uy € H(Q), with —1 < uy < 1 a.e. x € Q. Then, when
f is defined in (2.5), problem (2.16), (2.19) and (2.20) possesses a unique variational
solution u.

Thus, we define the semigroup and claim the existence of the global attractor which is
compact in L*(Q) and bounded in H*'(Q).

2.2.2 Higher-order anisotropic models

The corresponding higher-order anisotropic Allen-Cahn and Cahn-Hilliard equa-
tions, which are respectively the L?>— and H~'-gradient flow of the higher-order modified
Ginzburg-Landau type of free energy (2.8), read

k
% + Z(—nf Z a4 D™ u + f(u) = 0 2.21)
i=1 lal=i
and
ou k
o~ A Z(-l)i Z 4o D™ u — Af(u) = 0. (2.22)
i=1 la|=i

For the reason of simplicity, we consider in Chapter 5 the polynomial type of potential
rather than a thermodynamically relevant potential. The boundary condition and initial
condition are set to be

DU=0onT, |[a| <k -1, (2.23)

ul=o = Up. (2.24)

In summary, we have the regularity results for the higher-order anisotropic Allen-Cahn
problem :
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Theorem 2.2.4. (i) We assume that u, € Hg(Q). Then, (2.21), (2.23)-(2.24) possesses a
unique weak solution u such that, VT > 0, u € L*(R*; Hy(Q))NL*(0, T; H*(Q)NHE(Q))
and 3¢ € L*(0,T;L*(Q)). (ii) If we further assume that uy € H*(Q) N H{(Q), then
u e L*(R*; H¥(Q) n HY(Q)).

Based on this, we define the semigroup and verify that the semigroup is dissipative in
H*(Q)NH{(Q), also the existence of the global attractor, which is compact in Hi(€2) and
bounded in H*(Q). We also display several numerical simulations on the higher-order
anisotropic Allen-Cahn problem endowed with periodic boundary condition which illus-
trate anisotropic effects. For the higher-order anisotropic Cahn-Hilliard problem, we
have the

Theorem 2.2.5. (i) We assume that ug € H’g(Q). Then, (2.22), (2.23)-(2.24) possesses a
unique weak solution u such that, YT > 0, u € L*(R"; HS(Q))HLZ(O, T, H2k(Q)ﬂHg(Q))
and % € L*(0,T; H'(Q)).

(ii) If we further assume that uy € H**'(Q) N Hy(Q), then, YT > 0, u € L™(R*;
H*'(Q) N H{(Q)) and % € L*(0,T; LX(Q)).

(iii) If we further assume that f is of class C**' and uy € H*(Q) N Hy(Q), then
u e LR H*(Q) N H’g(Q)).

We further define the semigroup and derive that the semigroup is dissipative in H*(Q)N
H{(€Q), also the existence of the global attractor, which is compact in H§(Q) and bounded
in H*(Q).

2.2.3 Higher-order generalized Cahn-Hilliard equations

We then study the higher-order generalized Cahn-Hilliard equation in Chapter 6,
which has been shown in (2.10), and is recalled here

8 a .
G_Ltt — A 1D DU~ Af(u) + glx,u) = 0. (2.25)
i=1 la|=i
DU=0onT, [a| <k -1, (2.26)
o = uo. (2.27)

In this Chapter, we consider only the case k > 2, since the case kK = 1 can be treated as
in [93]. In the theoretical analysis, we derive the a priori estimates for the problem and
the regularity of a unique weak solution, namely,

Theorem 2.2.6. (i) We assume that u, € H{;(Q). Then, (2.25)-(2.27) possesses a unique
weak solution u such that, YT > 0, u € L*(R*; H§(Q)) N L*(0, T; H*(Q) N HY(Q)) and
e [20,T; H' ().
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(ii) If we further assume that uy € Hk“(Q)ﬂHg(Q), then, NT > 0, u € L*(R*; H*'(Q)n
HE(Q) and & € LX(0, T; LX(Q).

(iii) If we further assume that f is of class C**', g(x, s) = g(s), g is of class C*' and
ug € H*(Q) N HY(Q), then u € L™(R*; H*(Q) N Hy(Q)).

We then define the semigroup and derive that the semigroup is dissipative in H*(€) N
H{(€Q), also the existence of the global attractor, which is compact in Hy(Q) and boun-
ded in H?*(Q2). In the numerical part, we take several different cases into account and
demonstrate numerical results to Cahn-Hilliard Oono equation, phase field crystal equa-
tion and the equation which describes the tumor growth.

2.2.4 Modified higher-order anisotropic Cahn-Hilliard model

We consider in Chapter 7 the modified higher-order anisotropic Cahn-Hilliard equa-
tions which read, fork e N, k> 2, xe Qc R4 (d = 1,2,3),

k
Bt + Ay — A Z(—l)f Z a0 D*u— Af(u) = 0 (2.28)
i=1 la|=i
uli=o = uo; Usli=o = vo. (2.29)

Based on the work of Grasselli and Wu (see [75] and [76]), the difficulty here to study
(2.28) 1s to extend the regularity analysis to higher-order anisotropy terms. Nevertheless,
considering the problem with periodic boundary condition, we have the

Theorem 2.2.7. (i) For any initial data (uy, vo) € Hy(Q)xH™'(Q), problem (2.28)-(2.29)
possesses a unique weak solution (u, u,), such that, forN T > 0, u € L*(R"; Hg(Q)) and u; €
L*0,T; H'(Q)).

(ii) If we assume that (ug,vo) € (H*''(Q) N HE(Q)) X L*(Q), then we have, u €
L®(R*; H*'(Q) n HS(Q)) and u, € L*(0, T; L>(Q)).

(iii) If we further assume that f is of class C**', and (ug, vo) € (H*(Q) N H5(Q)) X
HY(Q), then u € L*(R*; H*(Q) N H’(;(Q) and u, € L0, T; H'(Q)).

Therefore, we define the semigroup and claim that the semigroup is dissipative in HS(Q)O
H~'(Q), also we have the existence of the global attractor, which is compact in HS(Q) N

H~'(Q). Furthermore, in Chapter 8, we develop numerical schemes, which consist of

finite element or spectral method in space and a second-order stable scheme in time for

equation (2.28) with an additional term yu, which we recall here

k
o+ =AY (=1 " a,D*u = Afu) + yu = 0. (2.30)

i=1 |ev|=i
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We derive the energy stability results and the regularity results for the numerical so-
lution taking both the semi-discrete and fully discrete scheme into account. Numerical
simulations illustrate and support the numerical analysis and also the anisotropy effects.

2.2.5 MEMS model

The following idealized parabolic MEMS problem (see [46] and [114] for more
detail) will be discussed in Chapter 9,

ou Y
o Mgy e 2.31)

u(t,x) =0 on 0Q; u(0,x)=0 in Q,
and the corresponding elliptic problem :
A
f(x) h Q.

“Eacu ! (2.32)
ux)=0on 0Q; O0<u<l in Q,

where u = 1—w (w was introduced in (2.15) which represents the dimensionless distance
between the membrane and the plate), and f describes the dielectric profile of the elastic
membrane and 4 > 0 characterizes the applied voltage. We propose stable and efficient
numerical methods to solve problem (2.31) and discuss the influence of the value of 4
on the solution. To be exact, we build the semi-implicit semi-discrete scheme : for 7 > 0
given, t, =nt,n=0,1,---,

Atf(x) .
n+l — A ntl = Uy + ———= 1n Q,
u +1 TAU +1 u (1 — un)z 1 (2.33)
U1 =0 on 0Q,
and the implicit semi-discrete scheme :
Atf .
Upe1 — TAUp ) = U, + ————— in €,
. . (1= tye1)? (2.34)

U1 =0 on 0Q,

where u,,.1 =~ u(t,.1, x), u, =~ u(t,, x) and u is the initial condition. We also note that
the unique minimal solution to problem (2.32) is denoted by u, and the so-called pull-in
voltage is denoted by A*. Then in conclude, assuming that 4 < 1*, we have the following
results for scheme (2.33) :

Proposition 2.2.1. (i) There holds, for alln € NU{0}, 0 < u,(x) < u (x), a.e. x € Q;in
particular, for all n € N U {0}, u, exists and satisfies 0 < u,(x) < 1, a.e. x € Q.
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(ii) If we assume 5 +160T (1 + (12_%3) < 1, where, cy > 0 is the optimal constant in the
Poincaré inequality, then, u, converges to u, in L*(Q) as n — +oo.

(iii) If we take the initial value 0 < uy < u,, the numerical solution u, is mono-
tonously increasing and bounded by u, ; we also note that, under the assumption of
A < A% the elliptic problem possesses at least two solutions which are denoted by u,,
uy and uy < uj. If we take u, < uy < uj, it is verified that the numerical solution u, is

monotonously decreasing and bounded by u,.

For scheme (2.34), we deduce that, under certain assumption, u, converges to u, in
Hé(Q) as n — +o0; in particular, in 1D, u, converges to u, in C(Q) as n — +oo.
We also construct the fully discretized semi-implicit scheme in one dimension,
which can be written as
AU™ = U"+ G(UY),

where A is the fully discretized coefficients matrix, U™*! and U" are the solution vector
at (n + 1)-th and n-th time node and G is the vector associated to the nonlinear term.
We verify that, under reasonable assumption, the numerical solution U"*! is bounded
and monotone increasing, and converges. Finally, the numerical simulations on the dis-
cussion of A* and the numerical solution associated to different initial conditions and
different A, both in one dimension and two dimension, are given.
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Chapitre 3

Higher-order models in phase
separation

Modeles d’ordre élevé en séparation de phase

Ce chapitre est constitué de 1’article Higher-order models in phase separation publié¢
dans le journal Journal of Applied Analysis and Computation, Volume 7(1)(2017), 39-
56.

Cet article est écrit en collaboration avec Laurence Cherfils et Alain Miranville.
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3.1 Introduction

The Allen-Cahn (see [4]) and Cahn-Hilliard (see [19] and [20]) equations are cen-
tral in materials science. They both describe important qualitative features of binary
alloys, namely, the ordering of atoms for the Allen-Cahn equation and phase separation
processes (spinodal decomposition and coarsening) for the Cahn-Hilliard equation.

These two equations have been much studied from a mathematical point of view ;
we refer the readers to the review papers [36] and [108] and the references therein.

Both equations are based on the so-called Ginzburg-Landau free energy,

Yoo = f(%quI2 + F(u))dx, a > 0, (3.1)
Q
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where u is the order parameter, F' is a double-well potential and € is the domain oc-
cupied by the system. The Allen-Cahn equation (which corresponds to an L2-gradient
flow of the Ginzburg-Landau free energy) then reads

0

= oAu+ fu) =0, (3.2)
ot

where f = F’, while the Cahn-Hilliard equation (which corresponds to an H~!-gradient
flow) reads

% +aAu—Af(u) = 0. (3.3)

In 3.1, the term |Vu|?> models short-ranged interactions. It is however interesting to note
that such a term is obtained by truncation of higher-order ones (see [20]); it can also
be seen as a first-order approximation of a nonlocal term accounting for long-ranged
interactions (see [65] and [66]). Furthermore, G. Caginalp and E. Esenturk recently pro-
posed in [23] higher-order models in the context of phase-field systems. More precisely,
they studied anisotropic higher-order models, which, in the isotropic limit, yield a free
energy of the form

WhoaL = f (> al=Miup
Q =1,k i even - (3.4)
+ Z ail(=A) 7 ul? + Fu))dx, ax > 0, k > 1.
i=1,...,k, i odd

The corresponding higher-order Allen-Cahn and Cahn-Hilliard equations then read

0
a—bt‘ + P(—N)u+ f(u) = 0, (3.5)
and
ou
i AP(—A)u — Af(u) =0, (3.6)
respectively, where
k
P(s) = ) ais'. 3.7)

i=1
In particular, these models contain sixth-order Cahn-Hilliard models. We can note that
there is currently a strong interest in the study of sixth-order Cahn-Hilliard equations.
Such equations arise in situations such as strong anisotropy effects being taken into
account in phase separation processes (see [128]), atomistic models of crystal growth
(see [8], [9] and [56]), the description of growing crystalline surfaces with small slopes
which undergo faceting (see [122]), oil-water-surfactant mixtures (see [68] and [69])
and mixtures of polymer molecules (see [50]). We refer the reader to [40], [75], [76],
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3.2. The Allen-Cahn theory

[79], [84], [85], [95], [96], [97], [99], [115], [116], [117], [118], [135], [136] and [137]
for the mathematical and numerical analysis of such models. They also contain the
Swift-Hohenberg equation (see [96] and [99]).

Our aim in this paper is to study the well-posedness of (3.5) and (3.6). We also prove
the dissipativity of the corresponding solution operators, as well as the existence of the
global attractor.

3.1.1 Notation

We denote by ((+,-)) the usual L?-scalar product, which associated norm || - ||. We
further set ||-]|-; = ||(—A)‘% -|l, where —A denotes the minus Laplace operator associated
with (homogeneous) Dirichlet boundary conditions (it is a strictly positive, selfadjoint
and unbounded linear operator with compact inverse (—A)™!). Note that || - ||_; is equi-
valent to the usual H~'-norm on H'(Q) = Hy(Q)'. More generally, || - [y denotes the
norm on the Banach space X.

For m € N, we set H"(Q) = {v € H"(Q),v = Av = --- = ATy = 0 on I},
where [-] denotes the integer part. This space, endowed with the usual H”-norm, is a
closed subspace of H”(Q). Furthermore, v — [|(=A)Z V|| is a norm on H"(Q) which is
equivalent to the usual H”-norm.

Throughout the paper, the same letters ¢, ¢’ and c¢” denote (generally positive)
constants which may vary from line to line. Similarly, the same letter QO denotes (po-
sitive) monotone increasing (with respect to each argument) and continuous functions
which may vary from line to line.

3.2 The Allen-Cahn theory

3.2.1 Setting of the problem

We consider in this section the following initial and boundary value problem in a boun-
ded and regular domain Q ¢ R", n = 1, 2 or 3, with boundary I" :

d
a_l: + P(—Nu+ f(u) = 0, (3.8)
u=Au=---=A"1y=0, onT, (3.9)
I/llt:() = Uyp. (310)

We assume that the polynomial P is defined by

P(s)= Y ais', ax >0, k>1, seR. (3.1

1

k
=1
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Chapitre 3. Higher-order models in phase separation

In particular, for k = 1, we recover the classical Allen-Cahn equation, while, for k = 2,

the model contains the Swift-Hohenberg equation.
Furthermore, as far as the nonlinear term f is concerned, we assume that

feC'(R), f(0)=0,
f' > —co, co =0,
f(s)s 2 c1F(s)—cy 2 —c3, ¢ >0, ¢z, 320, s€eR,

F(s)>c3s*—cs, 350, ¢4 >0, s eR,

where F(s) = fos f(&)déE. In particular, the usual cubic nonlinear term f(s) =

satisfies these assumption.
We will often use the interpolation inequality

m

I(=A)2v]| < c@I=A) 3] [v))'—,
ve H"Q), ie{l,....m—1}, me N, m > 2.

3.2.2 A priori estimates

(3.12)
(3.13)
(3.14)
(3.15)

S3—S

(3.16)

The estimates derived in this subsection are formal, but they can easily be justified

within a Galerkin approximation.
We multiply (3.8) by % and have, integrating over Q and by parts,

d < i ou
— E N=Au|lP+2 | F 2ll—11? =
a,t(i:1 a;l|(=A)zu||” + L (w)dx) + ”8t” 0,

meaning that the energy decreases along the trajectories, as expected.
We then multiply (3.8) by u to obtain

k
% %llullz " Z‘ aill(=)2ulP + ((f(), w) = 0,

We note that it follows from the interpolation inequality (3.16) that, for i € {i,...

and k > 2,

=AYl < ell(=A)2ull® + e, e)llul®, Ve > 0.
It thus follows from (3.14) and (3.18)-(3.19) that

d ’
P + el g, + f F(u)dx) < ¢(lulP + 1), ¢ > 0.
Q

Noting finally that
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3.2. The Allen-Cahn theory

llull® < ellully g, + c(e), Ve >0, (3.21)
we deduce from (3.15) and (3.20) that

d
E||u||2 + c(llullfy g, + f F(u)dx) < ¢, ¢ > 0. (3.22)
Q

Summing (3.17) and (3.22), we find, noting that Zf;l a,-ll(—A)%ull2 < C||M||§,k(g), a
differential inequality of the form

dE 0
L elE + ||a—”l‘||2) <c,e>0, (3.23)
where
k .
Ei =) aill(=8)2ul +2 f Fu)dx + |lul
i=1 Q
satisfies

Ey = c(lullfyq, + f F(udx) - ¢, ¢ > 0. (3.24)
Q

Indeed, it follows from the interpolation inequality (3.16) that

E, > c(||u||1%,kQ + f F(u)dx) —|ul* = c”
Q

and we conclude by employing (3.15) and (3.21).
We then multiply (3.8) by —Au and have, owing to (3.14),

d k i+
ZIVul? 42 ) all=8) % ulf < 2col[ V. (3.25)
i=1

Summing (3.23) and ¢, times (3.25), where ; > 0 is small enough, we obtain,
employing once more the interpolation inequality (3.16), a differential inequality of the
form

dE2 2 ou 2 ,
7 T Bl g + 115710 < ¢ e > 0, (3.26)

where

E,=FE + 51||VM||2

satisfies
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Chapitre 3. Higher-order models in phase separation

Ey > c(lullfy g, + fg F(uydx) - ¢, ¢ > 0. (3.27)
In particular, it follows from (3.26)-(3.27) and Gronwall’s lemma that
®)|[7 ) < c€ il ) + fg F(up)dx) +¢”, ¢ >0, 120, (3.28)
and
t+r au
f (lel 71 + IIEIIZ)ds
: (3.29)
< ce_cl’(lluollilk(g) + fF(ug)dx) +c"(r), ¢ >0, >0,
Q
r > 0 given.

Our aim is now to obtain higher-order estimates. To do so, we will distinguish bet-
ween the cases k > 2 and k = 1.
First case. k > 2.

We multiply (3.8) by (—=A)*u and find, owing to the interpolation inequality (3.16),

d k / %
EII(—A)IEMII2 + cllullf gy < CIF@IP + ull, ¢ > 0. (3.30)

H*(Q) =

We note that it follows from the continuity of f and the continuous embedding H*(Q2) C
C(Q) that

I @I < Qlulliz o),

hence, owing to (3.28) (recall that k > 2 ; also note that it follows from the continuity of
F that | [, F(uo)dx| < Q(luollm)),

IF@IP < e Qlluollar@) + ¢ ¢ >0, 1> 0. (3.31)
We thus deduce from (3.28) and (3.30)-(3.31) that

d k -’ 7 ’
EII(—A)’ZCMII2 + cllelF g < € Qluollane) + €5 ¢, ¢ > 0. (3.32)

Summing (3.26) and (3.32), we have a differential inequality of the form

dE 9z -’ 17 ’
T2 ey + gy + 1517 < € Qlluolliran) + s e ¢ >0, (333)

where
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3.2. The Allen-Cahn theory

Es = Ey +[(=A)2ull

satisfies

E; > C(”””Hk(g) fF(u)dx) -, c>0. (3.34)
Q

We then rewrite (3.8) as an elliptic equation, for ¢ > 0 fixed,

P(-A)u = —% — f), u=Au=--=A""yu=00onT. (3.35)

We multiply (3.35) by (—A)*u and obtain, employing the interpolation inequality (3.16),

a ou
Ekll(—A)kull2 < c(llul® + IIEII2 +If @),

hence, in view of (3.28), (3.31) and standard elliptic regularity results,

el ) < C(II || + ¢ Qlulle) + 1), ¢ > 0. (3.36)

We now differentiate (3.8) with respect to time to find

0 8u
war T P(-A )— + f'(u )— =0, (3.37)
au_ (914__ k—l%_
5 = A_at =...= A 3 = OonT, (3.38)
ou
E(O) = —P(=A)ug — f(uo). (3.39)

Note that, if uy € H*(Q), then %(0) € L*(Q) and, owing to the continuous embedding
H?(Q) c C(Q) and the continuity of f,

o
”a_L:(O)” < O(luollzs)- (3.40)

Multiplying (3.37) by ‘Z‘t‘, we have, owing to (3.13) and the interpolation inequality
(3.16),

— —2 3.41
d”(?t” < || || (3.41)

It then follows from (3.29), say, for r = 1, and the uniform Gronwall’s lemma (see, e.g.,
[127]) that
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Chapitre 3. Higher-order models in phase separation

au —c ’
||E(t)||2 <e tQ(||M0||Hk(Q)) +c,c>0,t>1. (3.42)
Noting that it follows from (3.40)-(3.41) that

ou .
IIE(Z)II2 < e“Qlluollp@)), ¢ >0, 20, (3.43)
we finally deduce from (3.42)-(3.43) that

au —Ci ’
IIE(I)II2 < e " Qluollgx@) + ¢, ¢ >0, 120, (3.44)
Having this, it follows from (3.36) and (3.44) that

(|2 < € Qlluollpxy) + ¢, ¢ >0, 1> 0. (3.45)

Remark 3.2.1. It also follows from the above that
@Il < e QUluollm@) +¢'s ¢ >0, £ > 1. (3.46)

Second case. k = 1.
We take a; = 1 for simplicity. We again rewrite (3.8) as an elliptic equation, for
t > 0 fixed,

P
~ Au+ f(u) = —8—”;, u=0onT. (3.47)

We multiply (3.47) by —Au and obtain, employing (3.13) and standard elliptic regularity
results,

ou
el ) < C(IIEII2 + (IVul). (3.48)
Next, we differentiate (3.8) with respect to time to find
0 Ou ou . Ou
% =0onT, (3.50)
ou
E(O) = Aug — f(uo). (3.51)

Note that, if uy € H*(€), then 2(0) € L*(Q) and

0
|I8—L;(0)II < OQlluoll2())- (3.52)
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3.2. The Allen-Cahn theory

u

5> We can prove that

Proceeding then exactly as above, i.e., multiplying (3.49) by

au —c ’
IIE(I)II < e Qluollpp@) + ¢, ¢ >0, 120, (3.53)
whence, owing to (3.28) for k = 1 and (3.48),

lu@®ll2) < € Qluollpz) + ¢, ¢ >0, > 0. (3.54)

Actually, there also holds, proceeding as above,

luOll 2y < €_CIQ(||M0||,2L,1(Q) + f F(up)dx)+c’, ¢>0, t>1. (3.55)
Q

3.2.3 The dissipative semigroup
We have the

Theorem 3.2.1. (i) We assume that uy € H*Q), with fQF(uO)dx < +oo when k = 1.
Then, (3.8)-(3.10) possesses a unique solution u such that, VT > 0, u(0) = uy,

u € L°(R*; BY(Q)) n LX(0, T; H*(Q)),

ou
— e X0, T;L*(Q
5 © ( ()

and

k
d%((u, V) + 21 ai((=A)3u, (=A)3v)) + ((f (), v) = 0, ¥y € C(Q).
(ii) If we further assume that uy € H*(Q), then

u € L(R*; H*(Q)).

Proof. a) Existence :

The proof of existence is based on the a priori estimates derived in the previous
subsection and, e. g., a standard Galerkin scheme.

b) Uniqueness :

Let u; and u, be two solutions with initial data uo; and u,, respectively. We set
u=u; —u and uy = Uy — Uy, and have

Ou

i + P(=A)u + f(u;) — f(up) =0, (3.56)
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u=Au=---=A"u=00nT, (3.57)

Ltltz() = Uy. (358)

We multiply (3.56) by u and have, owing to (3.13) and the interpolation inequality
(3.16),

d ,
Ellull2 + cllullfy g, < ¢llull, ¢ > 0. (3.59)

It thus follows from Gronwall’s lemma that

(1 — u)@)II < e“lluo,s — uoall, 20, (3.60)

hence the uniqueness, as well as the continuous dependence with respect to the initial
data in the L?>—norm. O

It follows from Theorem 3.2.1 that we can define the semigroup S(¢) : ® — @,
up — u(r), t > 0 (i.e., S(0)=I (identity operator) and S(t + 7) = S(t) o S(7), t, T > 0),
where ® = H?*(Q). Furthermore, S (¢) is dissipative in ®, owing to (3.45) and (3.54),
in the sense that it possesses a bounded absorbing set By(i.e., VB € ® bounded, d7y =
to(B) > O such thatt >ty = S(t)B C By).

Actually, it follows from (3.60) that we can extend (by continuity and in a unique
way) S (1) to L*(Q). Furthermore, it follows from (3.22) that

d
Ellull2 +cllull* < ¢, ¢ >0, (3.61)

hence, owing to Gronwall’s lemma,

lu@Il < e “llugll + ¢’, ¢ > 0, £ >0, (3.62)
i.e., S () is dissipative in L?(Q). It then follows from (3.22) and (3.62) that

1+r
f Nl ods < ceuoll” + ¢”(r), ¢ >0, t>0, (3.63)
t

HYQ)
r > 0 given, so that, applying the uniform Gronwall’s lemma to (3.23), we have, for
r=1,
(@)l xcy < ce™Nuoll +¢”, ¢ >0, t > 1. (3.64)

This yields the existence of a bounded absorbing set 8, which is compact in L*(Q)
and bounded in H*(Q) ; actually, it follows from (3.46) and (3.55) that we can take B,
bounded in H**(Q). We thus deduce (see, e.g., [103] and [127]) the
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3.3. The Cahn-Hilliard Theory

Theorem 3.2.2. The semigroup S (t) possesses the global attractor A which is compact
in L*(Q) and bounded in ®.

Remark 3.2.2. (i) We recall that the global attractor A is the smallest (for the inclusion)
compact set of the phase space which is invariant by the flow (i.e., S()A = A, VYt > 0)
and attracts all bounded sets of initial data as time goes to infinity ; it thus appears as
a suitable object in view of the study of the asymptotic behavior of the system. We refer
the reader to, e.g., [103] and [127] for more details and discussions on this.

(ii) We can also prove, based on standard arguments (see, e.g., [103] and [127]) that
A has finite dimension, in the sense of covering dimensions such as the Hausdorff and
the fractal dimensions. The finite-dimensionality means, very roughly speaking, that,
even though the initial phase space has infinite dimension, the reduced dynamics can be
described by a finite number of parameters (we refer the interested reader to, e.g., [103]
and [127] for discussions on this subject).

3.3 The Cahn-Hilliard Theory

We now consider the following initial and boundary value problem :

(—A)‘l% + P(=A)u + f(u) =0, (3.65)
u=Au=---=A"1u=0, onT, (3.66)
Mlt:() = Uy. (367)

In particular, for k = 1, we recover the classical Cahn-Hilliard equation ; the case k = 2
corresponds to sixth-order Cahn-Hilliard models.

We make here the same assumptions as in the previous section and we further as-
sume that f € C*(R).

3.3.1 A priori estimates

First, repeating the same estimates as those leading to (3.26), we have a differential
inequality of the form

dE4 ou ,
oy TeEar el o1 ) + IIEIIZ) <c,c>0, (3.68)

where

k
E;= ) all(=A)ull* +2 f F(u)dx + |[ull*| + &lull®,
=1 Q

i
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0, > 0 being small enough, satisfies

Ey > c(lullfy g, + f F(uydx)—c’, ¢ > 0. (3.69)

Q
This yields that

D) gy < €0 utolp gy + f Fluo)dx) +¢”, ¢ > 0,120, (3.70)
Q

and

I+r a
2 u.o-
f il gy + 15 1)
t

(3.71)
< ce_C”(IIuolli,k(Q) + LF(uo)dx) +c"(r), ¢ >0,1>0,

r > 0 given.
We now again distinguish between the cases k > 2 and k = 1.
First case. k > 2.
First, proceeding as in the previous section, we obtain an inequality of the form

dE Oou o . ,
d—; + C(Es + [l ) + IIEIEI) < e "Qlluollz@) + ¢, ¢, ¢ >0, (3.72)

where

Es = Eq4+||ull>

H-1(Q)
satisfies
Es > c(||u||i,k(g) + LF(u)dx) -c, ¢c>0. (3.73)
We then multiply (3.65) by —A% and find
d Bl ou » 2
E(; aill(=A) = ull) + =1 < NAS I (3.74)

Since f is of class C?, it follows from the continuous embedding H*(Q) c C(Q) that

IAf@IP < Ol @), (3.75)
hence, owing to (3.70),
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3.3. The Cahn-Hilliard Theory

d a i+l —c ’
E(Z all(=A) = ull’) < €™ Qlluolley) + €5 ¢ > 0. (3.76)
i=1

It finally follows from the interpolation inequality (3.16), (3.71) (for r = 1), (3.76) and
the uniform Gronwall’s lemma that

(@)l g1y < € Qlluollgry) + ¢’ ¢ >0, t > 1. (3.77)
Remark 3.3.1. Actually, owing again to (3.76), there holds
||M(t)||Hk+I(Q) < e_CtQ(”I/lO”HkH(Q)) + C,, c > O, t> 0. (378)

We now rewrite (3.65) as and elliptic equation, for ¢ > 0 fixed,

P(-A)u = —(—A)‘l% —fw), u=Au=---=A""u=00nT. (3.79)

Multiplying (3.79) by (—A)*u, we have, employing the interpolation inequality (3.16),

a ou
Ekll(—A)kull2 < c(llull® + If w)I* + IIEIIZLI),

hence, since f and F are continuous and owing to (3.70),

ou
2 —c 2 /
Ul < € Qlutoll i) + C’IIEII_l +c”,¢>0,120. (3.80)

Next, we differentiate (3.65) with respect to time to obtain

0 Ou ou ou
_A _1__ P_A_ 4 —_— = . 1
(=4A) Err v ( )8t+f(u)(9t 0, (3.81)
(9” _ (914 _ _ k—lau _
o = A@t =...=A 5 = OonT. (3.82)

Multiplying (3.82) by (33_';’ we find, employing (3.13) and the interpolation inequality
(3.16),

0 ou , ou ,
I + el gy < €

which yields, employing the interpolation inequality

u.o,
I

E ’

VP < eVl VYL, v e HpQ, (3.83)

the differential inequality
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0 ou , ou ,
— || — < B — . .
at” at“_l = C”al”_l (3.84)

It then follows from (3.71) (for r = 1), (3.84) and the uniform Gronwall’s lemma that

8” — ’” ’
15 O, < ce™(uolu g, + fF(uo)dx)+c ¢ >0,t>1.  (3.85)
Q

We finally deduce from (3.80) and (3.85) that

()| 2y < e_C[Q(”uO”Hk(Q)) +c,c>0,1>1. (3.86)
Remark 3.3.2. We further assume that f is of class C**'. Multiplying (3.65) by (—A)* ‘g—’;,
we have
10 d i+k k=10 k+1 10U
55(; aill(=) = ul?) + I(=A) 7 # |7 = —=(((-A) f(u), (_A)%E))’
which yields, noting that ||(—A)%f(u)||2 < O(lJullgr+1(qy)) and owing to (3.78),
Q(Zk: a-ll(—A)%ullz) < e " O|ugllgrs1y) + ', ¢ >0, 1 >0 (3.87)
Gtizll = oll 1) ) , 12 0. .
It follows from the interpolation inequality (3.16) and (3.87) that
(D 2+ ) < Qluoll ) t € [0, 11,
so that, owing to (3.86),
()l x) < € Qllluollp) +¢'s ¢ >0, £ > 0. (3.88)

Second case. k=1.
We now consider the initial and boundary value problem (for simplicity, we take
ay = 1)

(—A)‘l% —Au+ f(u) =0, (3.89)
u=0onT, (3.90)
U= = uo. (3.91)

Differentiating (3.89) with respect to time, we have
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0 Ou ou ou
A" —— - A— + f(u)— =0,
T T MR A O »

%:O,onr.

Multiplying (3.92) by %, we obtain, owing to (3.13),

1d ou, ou , ou ,

——I=IIZ; + IV=II" < coll=II",

5 715 151 + IVl < coll
which yields, employing the interpolation inequality (3.83),

d ou , ou ,
1= < cll—II7,.
Tilg P sl

Let us assume that uy € H>(Q) N Hy(Q). Then, noting that
_1 ou 3 1
(=A)2 E(O) = =(=A)2up — (=A)2 f(uo),

we see that (—A)~2 24(0) € L*(Q) and

0o
||a—”t‘(t>||_1 < O(luollzry)-

It thus follows from (3.94)-(3.95) and Gronwall’s lemma that

ou )
”E(t)”—l < e“Qluollgz)), t > 0.

Rewriting then (3.89) as an elliptic equation, for ¢ > 0 fixed,

—Au+ f(u) = —(—A)‘l%(t), u=0onT,

we find, multiplying (3.97) by —Au and employing (3.13),

1 0
Sl < coll VP + c||8—bt‘||%1.

We finally deduce from (3.70) (for k = 1), (3.96) and (3.98) that

(2 < €C[Q(||M0||H3(Q)), t>0.

(3.92)

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)

(3.98)

(3.99)

Actually, (3.99) is not satisfactory , in particular, in view of the study of attractors,

and we can do better, namely, we can prove that uy, € H*(Q) N H(l) () suffices.

. . ('ju
Indeed, multiplying (3.89) by —A%!, we have
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d ou
—Aull? + | —I* < IAf@)IP, 3.100
dt” ull +”6t” < [Af@l ( )
which yields, proceeding as above,
d 2 2
EIIAMII < Q(l|Aull*). (3.101)

We set y = ||Aul[* and consider the differential inequality

Y < 0O), ¥(0) = l[Augll. (3.102)
Let z be a solution to the ODE

7 = 0(2), 2(0) = y(0). (3.103)

It follows from the comparison principle that there exists Ty = To(|[uollp2)) > O (say,
belonging to (0, 1)) such that

y(1) < z(0), 1 €0, Tol, (3.104)

hence

eIz < Olluollm2))s t € [0, Tol. (3.105)
Next, we multiply (3.92) by t% and obtain, proceeding as above,
d ou, ou , ou
—(t|l— <ctll=—IZ; + ll=I15;- 3.106
a’t( ||at||_1) c ||8t||-1 |I8tll_1 ( )
It follows from (3.68) (for k = 1), (3.106) and Gronwall’s lemma that
ou )
IIE(To)II_I < Olluollgz())- (3.107)
Then, we deduce from (3.94) and Gronwall’s lemma (between Ty and ¢ > 7)) that
ou. - (—To)y Ol ’
—@IF, < TN —(TII?,, t = T,
”(')t( Ny <e IIGt( ollZ 0

so that

ou
||E(l)||31 < e Qlluollzr (), t = To. (3.108)

Returning to the elliptic problem (3.97) and to (3.98), we now find

2
DIy < ¢ Qllluolline). 1> To,
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3.3. The Cahn-Hilliard Theory

hence, owing to (3.105),

(| 2@y < €CtQ(||M0||H2(Q))’ t>0. (3.109)

We can note that the above estimate is not dissipative, as its right-hand side goes to
+00 as t goes to +oo. In order to have a dissipative estimate, we now multiply (3.89) by
—Au, which gives, owing to (3.13),

1d
Ea,—tllull2 +1Aull® < col Vull*.

This yields, owing to (3.68) (for k = 1),

1
f IAulPds < c(lluoli} g, + f F(up)dx) + . (3.110)
0 Q

There thus exists T € (0, 1) such that

”u(T)”ip(Q) < c(”u()”?_]l(g) + f F(M())d.X) + C,. (31 1 1)
Q

Actually, repeating the above estimates (and employing, in particular, (3.109)), but star-
ting from ¢ = T instead of t = 0, we obtain the smoothing property

(Dl 0, < QUluoll71 +fQF(uo)dX)- (3.112)

Repeating again the above estimates (leading to (3.112)), we find, for ¢ > 1,

(172 < Qlu(t = DI7 g, +LF(u(t— 1)dx), (3.113)

where the function Q does not depend on ¢ (note indeed that (3.103) is an autonomous
ODE and that the function Q in (3.113) is thus the same as that in (3.112)). Employing
(3.68) (for k = 1), we finally deduce that

lullr2) < e_CtQ(Iluollzl(Q) + fF(uo)dX) +cd,c>0,121, (3.114)
Q

hence a dissipative (and also smoothing) estimate.

3.3.2 The dissipative semigroup.
We have the
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Theorem 3.3.1. (i) We assume that uy € H*(Q), with J;IF(uo)dx < +oo when k = 1.
Then, (3.65)-(3.67) possesses a unique solution u such that, VT > 0, u(0) = u,

u € L°(R*; HY(Q)) n LX0, T; H*(Q)),

du 2 .-l
" € L°(0,T; H'(Q))

and

k
%(((—A)_lu, V) + ; ai(—A)2u, (~8)1) + (). v)) = 0, v € CZ(Q).

(ii) If we further assume that uy € H**'(Q), then

u e L*(R"; HL(Q)).

(iii) If we further assume that f is of class C**' and uy € H*(Q), then

u € L(R*; H*(Q)).

The proof of Theorem 3.3.1 is very similar to that of Theorem 3.2.1 ; we just mention
that, in order to prove the continuous dependence (with respect to the initial data ; in the
H~'—norm here), we need to use the interpolation inequality (3.83).

Proceeding again as in the previous section, we also have the

Theorem 3.3.2. The corresponding semigroup S (t) possesses the global attractor ‘A
which is compact in L*(Q) and bounded in ®, where ® = H*(Q).

Remark 3.3.3. Actually, the Cahn-Hilliard equation usually is associated with Neu-
mann boundary conditions. In the case of the higher-order Cahn-Hilliard equation

(3.6), these read

ou OAu 3 ON*u

v v
where v denotes the unit outer normal vector. Integrating (3.6) over Q, we note that we
have the conservation of mass,

=0onT,

u@) = (up), t >0, (3.115)

where, for v € L'(Q), (v) = V{+(Q) fQ vdx. We then rewrite (3.6) in the equivalent form
_,0u
(-4) o P(=Mu+ f(u) - {f(u)) =0, (3.116)
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3.3. The Cahn-Hilliard Theory

where, here, (~A)~" is associated with Neumann boundary conditions and acts on func-
tions with null spatial average. In particular,

vis (I(=A) 27| + ()2

is a norm on H''(Q) = H'(Q) which is equivalent to the usual H™'—norm, where
v = v — (v) and being understood that, for v e H(Q), (v) = #(Q)(v, D10y We
further consider the spaces

- ou OAu OA"=2Ty
Hm(Q):{VEHm(Q)’E e

Ew Ew =0onl}, meN, m>2

(we agree that H' (Q) = H'(Q)), and note that

Ve (I=A) 257 + ()7

is a norm on H™(Q) which is equivalent to the usual H"—norm. We can then derive a
priori estimates which are similar to those obtained in the previous subsection. To do
so, in view of the mass conservation (3.115), we assume that [{uy)| < M, M > 0 given.
Furthermore, the most delicate step is to multiply (3.116) by it = u — (uy) and deal with
the nonlinear terms. This is done by replacing (3.14) by

F$)(s=7) 2 cF(s5) = '(y), c(y) >0, (9) 20, seR, yeR, (3.117)

where the constants c(y) and c’(7y) depend continuously on y. Note that this assumption
is satisfied by the usual cubic nonlinear term f(s) = s° — s.The other estimates are
obtained by proceeding as in the previous subsections. Note however that the constants
depend in general on M. Furthermore, in order to have compact attractors, we have to
work on subspaces of the phase space on which [(ug)| < M (see, e.g., [127] in the case
of the classical Cahn-Hilliard equation).
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Chapitre 4

Higher-order Allen-Cahn models with
logarithmic nonlinear terms

Modeles d’Allen-Cahn d’ordre élevé avec des
termes non lin€aires logarithmiques

Ce chapitre est constitué de I’article Higher-order Allen-Cahn Models with Loga-
rithmic Nonlinear Terms publié dans Advances in Dynamical Systems and Control,
Volume 69(2016), 247-263.

Cet article est écrit en collaboration avec Laurence Cherfils et Alain Miranville.
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4.1 Introduction

The Allen-Cahn equation describes the ordering of atoms during the phase separa-
tion of a binary alloy (see [4]) and reads

%—aAu+f(u):(), a>0.

We studied in [32] generalizations of (4.1) of the form

ou
™ + P(=MNu + f(u) =0,
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where P(s) = Zle a;s', ay > 0, k > 1; in particular, when k = 1, we recover the
Allen-Cahn equation (4.1) and, when k = 2, the model contains the Swift-Hohenberg
equation (see [96] and [99]). Such higher-order (in space) terms were proposed in [23]
in the context of phase transition models and in the isotropic limit of more general
higher-order terms (also note that a second-order term in phase separation is obtained
by truncation of higher-order ones (see [20])).

In [32], we considered regular nonlinear terms (a typical choice is the usual cubic
nonlinear term f(s) = s> — s). It is however important to note that, in phase separation,
such a regular nonlinear term actually is an approximation of thermodynamically rele-
vant logarithmic ones of the form f(s) = —A;s + %ln ﬁ, s€(-1,1),0 < A, < A4,
which follow from a mean-field model (see [20] and [36] ; in particular, the logarithmic
terms correspond to the entropy of mixing).

The study of the classical Allen-Cahn equaiton (4.1) (i.e., kK = 1 in (4.2)) with lo-
garithmic nonlinear terms is well established (see, e.g., [94]). However, when k > 2 in
(4.2), the situation is much more involved and we are not able to prove the existence of
a solution in a classical sense (meaning in a classical weak/variational sense). Neverthe-
less, we are able to prove the existence of a (weaker) variational solution. This notion
of a variational solution was introduced in [104] for the Cahn-Hilliard equation with
singular nonlinear terms and dynamic boundary conditions and is based on a variatio-
nal inequality (see also [70] for a different, though related, approach based on duality
techniques). It was also applied with success in other situations in [29], [30], [96] and
[99].

Our aim in this paper is to study the well-posedness of (4.2) with a logarithmic
nonlinear term in the variational sense mentioned above. We also prove the dissipativity
of the corresponding solution operator, as well as the existence of the global attractor.

4.2 Setting of the problem

We consider the following initial and boundary value problem in a bounded and
regular domain Q ¢ R", n = 1, 2 or 3, with boundary I" :

04 P+ [0 =0, (4.3)
u=Au=---=A"'u=0, onT, (4.4)
uli=o = uo. 4.5)

We assume that the polynomial P is defined by

k
P(s) = Z as’, a, >0, k>1, seR. (4.6)

i=1
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As far as the nonlinear term f is concerned, we assume that

A 1+
F(s) = —Ais+ 21—,
2 1-ys

In particular, it is not difficult to show that it satisfies the following properties :

se(=1,1), 0 < A, < 4. 4.7)

feC?(=1,1), f(0)=0, (4.8)

iy S = e g J7= e @9

[ = -4, (4.10)

—c < F(s) + %lf(s)l < f(s)s+cy, 220, se(—1,1), (4.11)

where F(s) = fos f(&)dé. We can also note that F is bounded on (-1, 1) ; indeed, there
holds

F(s) = —%f + %((1 + 5)In(1 + 5) + (1 = 5) In(1 — 9)). (4.12)
Remark 4.2.1. We can note that all properties above easily follow from the explicit
expression of f. Actually, (4.10)-(4.11) follow from (4.8)-(4.9). The only difficulty here
is to prove that F(s) < f(s)s + ¢y, ¢co 2 0, s € (—1,1). To do so, it suffices to study
the variations of the function s — f(s)s — F(s) + %sz, whose derivative has, owing to
(4.10), the sign of s. We can thus consider more general singular nonlinear terms only
satisfying (4.8)-(4.9). Indeed, the boundedness of F is not necessary and just allows us

to consider more general initial data.

Setting

A
F(s) = —?1s2 + Fi(s),

we introduce the following approximated functions F; y € C*(R), N € N :

4

ZlF<f>(1—l)(s—1+l)f s>1- 1
LN NTETTN
1

Fin(s) =4 Fi(s). sl < 1=+, (4.13)

4

1 1 1. 1
DIFP-1+ s+ - =), s< -1+ .
£ | N N N

Setting Fy(s) = —%sz + Fin(8), fin = FLN and fy = F, there holds
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fn € CR), fv(0) =0, (4.14)

fin 20, fiy > -4, (4.15)

Fy 2 —c3, ¢3 20, (4.16)

Fan(s) = cas* —cs, c4>0,¢5>0, seR, “4.17)

In(s)s = co(Fn(s) + | fn(s)]) —c¢7, c6 >0, ¢ 20, s € R, (4.18)

Furthermore, all constants can be chosen independently of N. These properties follow
from the fact that we have similar properties for the original singular nonlinear term and
from the explicit expression of F y; we refer the reader to [49], [102] and [104] for
more details. We can also note that F is bounded, independently of N, in the neighbo-
rhood of 1.

We then consider the approximated problems

ou N N
s P(-Au + fy™) =0, (4.19)
W =Au = =AY =0, onT, (4.20)

MN|,=() = Uy. (421)

The existence, uniqueness and regularity of the solution u" to (4.19)-(4.21) were proved
in [32].

4.2.1 Notations

We denote by ((+,-)) the usual L>-scalar product, which associated norm || - ||. More
generally, || - ||x denotes the norm on the Banach space X.

We then consider the operator —A associated with Dirichlet boundary conditions ;
it is a strictly positive, selfadjoint and unbounded linear operator with compact inverse
(-A)~!, with domain H*(Q) N Hy(Q). In particular, this allows us (see, e.g., [127]) to
define the operators (—A)", m € R (being understood that, when m = 0, then (-A) is
the identity operator). For m € N, (—=A)" has for domain {v € H*"(Q), v=Av = --- =
A" 'y =0 onT). We set, for m € N,

H™Q)=veH"(Q),v=Av="---=A"Tly =0onT,

where [-] denotes the integer part. This space, endowed with the usual H”-norm, is a
closed subspace of H"(Q). Furthermore, v — I(=A)2v]|| is a norm on H"(Q) which is
equivalent to the usual H™-norm.

Throughout the paper, the same letters ¢, ¢’ and c” denote (generally positive)
constants which may vary from line to line and are independent of N. Similarly, the
same letter Q denotes (positive) monotone increasing and continuous functions which
may vary from line to line and are independent of N.

62



4.3. A priori estimates

4.3 A priori estimates

Our aim in this section is to derive uniform (with respect to N) a priori estimates
on u" which will allow us, in the next section, to pass to the limit N — +oco and prove
the existence of a solution to the original singular problem, in a suitable setting (i.e., as
mentioned in the introduction, based on a proper variational inequality).

Though formal, these a priori estimates can be fully justified in view of the regularity
results obtained in [32].

We assume from now on that —1 < up(x) < 1 a.e. x € Q.

Remark 4.3.1. For a more general singular nonlinear term f, we would need a stronger
separation property from the singular values +1, namely, ||luoll.~q) < 1.

We multiply (4.19) by % and have, integrating over Q and by parts,

d k i auN
d—t(; aill(=0)7u®|? +2 fg Fy(u")dx) + 2IIWII2 = 0. (4.22)

We then multiply (4.19) by #” to obtain

1d £ ;
EEIIL/\'II2 + ; aill (=)™ + ((fu @), u)) = 0. (4.23)
Employing the interpolation inequality

i

(=AY vl < cOI(=A)Evlm vl 7, ve H™(Q), ief{l,....m—1}, me N, m> 2,
(4.24)
from which it follows that, fori € {1,...,k— 1} and k > 2,
(=AY M| < ell(=A):uM (P + c(, ™|, Ve > 0, (4.25)
(4.18), (4.23) and (4.25) yield

d
EIIMNII2 + (™l g + f Fn@™)dx + [l fy@")llp@) < ¢ (P +1), ¢ > 0. (4.26)
Q

Noting finally that

NP Ml i) + c(e), Ye >0, (4.27)

we deduce from (4.17) and (4.26)-(4.27) that

[|lu < €||lu
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d ,
d—tIIMNII2 + (o) + f Fy@™)dx + |l fu@)ll@) < €5 ¢ >0, (4.28)
Q

Summing (4.22) and (4.28), we find, noting that Zle a,-II(—A)Ai.uNll2 < cllu||
differential inequality of the form

2
Hi @) @

dE ouN )
d;’N + By + Il +II=-IF) < ¢, ¢ > 0, (4.29)
where
k .
Eiy =) al(=0)iu"|? +2 f Frn")dx + |lu™)?
i=1 Q
satisfies

Ein 2 c(llu™|q, + f Fx™)dx) — ¢, ¢ > 0. (4.30)
Q

Indeed, it follows from the interpolation inequality (4.24) that

N2 N N2
Evw > (1P + f Fy()dx) = ¢ la|? - ¢
Q

and we conclude by employing (4.17) and (4.27).
We then multiply (4.19) by —Au” and have, owing to (4.15),

d :
EIIVMNII2 +2 ; aill(=A) = uM|? < 22,|1Vu|P. (4.31)
Summing (4.29) and ¢, time (4.31), where 6; > 0 is small enough, we obtain, em-
ploying once more the interpolation inequality (4.24), a differential inequality of the
form

dE> N N2 N o™ 2 ,
7 c(Exn + 1 s + v @Dl @) + IIEII )<<, >0, (4.32)

where

Eyny=E\ N+ 51||VMN||2

satisfies
Eyn 2 (|3 q, + f Fy™Mdx) ¢, ¢ > 0. (4.33)
Q
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In particular, it follows from (4.32)-(4.33) and Gronwall’s lemma that

nww@QSw4wm@®+fiM%mwﬂﬂa>arza (4.34)
Q

and

N
kfmmwm||HMMw”mmm fmwmwwmw>aea
Q

(4.35)
r > 0 given. Actually, noting that F(u) is bounded (independently of N and u), there
holds

Y Oy < ce ol + " ¢ >0, 120, (4.36)
and
f (HMN”HH](Q) ” || )ds < Ce—c [||u0||HA(Q) CN(I"), C, > 0’ t Z O’ r> 0 given'
(4.37)
We now differentiate (4.3) with respect to time to find
0 ouV ou ou
-A)— u)— =0, 4.38
% o P(- ) +fN( )6t (4.38)
ou ou ou
— =A—=---= A" =0onT, 4.39
ot ot a " (4.39)
ou
Wlt:O = —P(=A)uo — fn(uo). (4.40)

Multiplying (4.38) by % &> we have, employing (4.15) and the interpolation inequa-
lity (4.24),

d ou" , ou
D22 < o2l p. 4.41
5 1= cl—ll (4.41)

It then follows from (4.37), say, for r = 1, and the uniform Gronwall’s lemma (see, e.g.,
[127]) that

N

Ou —C
15— < ce™ ol

- 2yt e>0,1>1. (4.42)
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Remark 4.3.2. (i) Actually, it follows from the uniform Gronwall’s lemma that

auN C(r) -’ ” ’ .
IIW(I + )| < —e ol gy + " (1), ¢ >0, 120, r>0 given. (4.43)

(ii) We assume that ||uollr~q) < 1. We can note that, if uy € H>*(Q), then %(O) €
LZ(_Q) and it follows from the continuity of f and the continuous embedding H*(Q) C
C(Q) that, for N large enough (note that f, y coincides with f, = F| when |s| < 1 — % ),

ouN
IIW(O)II < Qlluollq)- (4.44)
It then follows from (4.41) and Gronwall’s lemma that
auN ct
IIEO)II < " Qlluoll (), = 0. (4.45)

Collecting (4.42) and (4.45) (for t € [0, 1]), we finally deduce that

ouV
IIF(t)II < e Qluollgex) + ¢’, ¢ >0, t>0. (4.46)

We finally rewrite (4.19) as an elliptic equation, for ¢ > 0 fixed,

o N
P(=A + fu(u) = —%, W= Au = = AN =0 onT. (4.47)
Multiplying (4.47) by —Au®, we find, owing to (4.15) and employing the interpolation
inequality (4.24),

ou
Np2 2 N2
™ i1 ) SC(HEII + w7 )

which yields, owing to (4.36) and (4.42),

1 (0)|? < ce || >0, t>1. (4.48)

2
Hk+1(Q) Hk(Q) +

Remark 4.3.3. We assume that ||ug||.~q)y < 1. There also holds, owing to (4.46) and for
N large enough,

1" (Dl ) < € Qlluollrxey) + ¢’ ¢ >0, 12 0. (4.49)

Of course, we have a similar H*—estimate on u™ (see [32]), but, in that case, the
constants and the function Q a priori depend on N.
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4.4 The dissipative semigroup

We assume in this section that £k > 2. For k = 1, i.e., for the classical Allen-Cahn
equation, one can prove the existence (and the uniqueness) of a classical (strong) solu-
tion u, owing to the fact that u is strictly separated from the singular values +1, meaning
that we essentially have to deal with a regular (and even bounded) nonlinear term (see
[94D.

Our main aim is to prove the existence (and uniqueness) of solutions to (4.3)-(4.5)
in a suitable sense, namely, based on a variational inequality.

To do so, we first derive a variational inequality from (4.3). In this regard, we multi-
ply this equation by u — v, where v = v(x) is smooth enough and satisfiesv = Av = --- =
A1y = 0 on T. We then have, recalling that f(s) = fi(s) — A;s, s € (=1, 1),

Ou

(5

k . .
=)+ D a0, (~A) (= ) + (filw), 1 =) = i (w,u = v) = 0.
i=1

Noting that f; is monotone increasing, this yields the variational inequality

9 d ; ,-
((6_3’ u—v))+ Z a;(=A)2u, (=A)2(u—v))) +((fi(w),u—v))— A4 ((u,u—v)) <0, (4.50)
i=1

1.€., the nonlinear term now acts on the test functions rather than on the solutions.
Based on this, we give the following definition (see also [104]) :

Definition 4.4.1. We assume that uy, € H*(Q), with —1 < uy(x) < 1 a.e. x € Q. Then
u = u(t, x) is a variational solution to (4.3)-(4.5) if, for all T > 0,

(1) -1 <u(t,x) < 1lae.(t,x),

(i) u € C([0, T1; L2 (Q)) N L=(0, T; H*(Q)) N L*(0, T; H*'(Q)),

(i) & € L*(0, T; L),

(iv) fiw) € L'((0,T) x Q),

(v) u(0) = uo,

(vi) the variational inequality (4.50) is satisfied for every ¢ > 0 and every test function
v = v(x) such that v € H*(Q), with fi(v) € L'(Q).

We first prove the uniqueness of variational solutions. To do so, we need to define as
admissible test functions the solutions temselves, i.e., we need to define admissible time-
dependent test functions. More precisely, we can admissible any function v = v(¢, x)
such that v € C([0, T1; LA*(Q)) N L=(0, T; H*(Q)) N L*(0, T; H*'(Q)), fi(v) € L'((0, T) x
Q) and % € L*(0,T; L*(Q)), YT > 0.
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Next, we write (4.50) for v = v(t, -), for almost every ¢ > 0. Noting that, owing to the
regularity assumptions on « and v, all terms are L' with respect to time, we can integrate
with respect to time to obtain

L9 d ; ;
f [((8_3’ u—v))+ Z ai(=A)2u, (=A)2(u—=v)) +((/i(v),u=v)) = 41 ((u, u—v))]d¢ < 0,
s i=1

(4.51)
for all 0 < s < ¢ and for every admissible test function v = v(¢, x). In particular, since
H*(Q) c C(Q), k > 2, then it follows from the above regularity that ((fi(u),u — v)) €
L'(Q), VT > 0.

Remark 4.4.1. We can replace (4.50) by (4.51) in Definition 4.4.1, (vi).
We will actually need a second variational inequality. To do so, let w = w(¢, x) be an
admissible test function and set
vy = =mu+nw, ne(,1].
Noting that

fi'(9)sgn(s) 2 0, s € (-1, 1), (4.52)

it follows that |f;| is convex, so that

i)l < [A@)] + [fr(w)]. (4.53)

This yields that fi(v,) € L'((0,T) x Q) and v, is an admissible test function. Taking
v = v, in (4.51) and dividing by 1, we find

L9 * ; ;
f (o= D ai(=) 1t (A0 =) +(Cfi (), =) =1 (at, u=w)) ) < 0.
s i=1

Passing finally to the limit  — 0 and employing Lebesgue’s dominated convergence
theorem (see (4.53)), we have

T k i i
f [((a—btt, M—W))+Z a;(=A)2u, (=A)2 (u=w))+((f1(w), u—w))— A1 ((u, u—w))]dé < 0,
$ i=1

(4.54)

for all 0 < s < ¢ and for every test function w = w(t, x).
Let now u; and u, be two variational solutions with initial data u; o and u,, respec-
tively. We take u = u; and v = u, in (4.51) and u = u, and w = u; in (4.54) and sum the
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two resulting inequalities. We obtain, after simplifications (recall that f; is monotone
increasing) and noting that all terms are absolutely continuous from [0, 7] onto L*(Q),

1 1 r & ;
Ellul(t) —w )| - 5””1(5) — ()| + f (Z I(=A)2(uy — w)lI* = Aylluy — ua||*)dé < 0.

S =l
(4.55)
Employing the interpolation inequality (4.24), we deduce that

1 1 d
Enul(r)—uz(r)nZ—Enul(s)—uz(s)nzSc f lluy — uslIdé,

so that, employing Gronwall’s lemma,

[y (1) = wa (O] < ™|ty (5) = ()],

where the constant c is independent of ¢, s, u; and u,. Passing finally to the limit s — 0,
we find

llety (1) — ua (DI < €y o — uapll, =0, (4.56)

hence the uniqueness, as well as the continuous dependence with respect to the initial
data in the L*>*~norm.
We now have the

Theorem 4.4.1. We assume that uy € HQ), with =1 < uy < 1 a.e. x € Q. Then,
(4.3)-(4.5) possesses a unique variational solution u.

Proof. There remains to prove the existence of a variational solution. To do so, we
consider the solution uy to the approximated problem (4.19)-(4.21) (as already mentio-
ned, the existence, uniqueness and regularity of #" is known). Furthermore, proceeding
as above, it is easy to see that " satisfies a variational inequality which is analogous to
(4.51), namely,

ooty S i N 0N
I[((E,u —V))+;ai(((—A) w’, (=A)2(u” —v))) 4.57)

+H(AAvW),u =) = L@, u" = v)]dé <0,
for all 0 < s < ¢ and for every admissible test function v = v(t, x).
It then follows from the uniform (with respect to N) a priori estimates derived in the

previous section ( which are fully justified at this stage) that, up to a subsequence, u"
converges to a limit function u such that, VT > 0,
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u" — uin L(0, T; HY(Q)) weak — * and in L?(0, T; H*"1(Q)) weak,

ou¥ 9
% = a_b; in L2(0, T; L2(Q)) weak,

u" = uin C([0, T]; H4(Q)), L*(0, T; H**'"¢(Q)) and a.e. in (0, T) X Q, € > 0.

Our aime is to pass to the limit in (4.57). We can note that the above conver-
gences allow us to pass to the limit in all terms in (4.57), except in the nonlinear term
fs t(( fin(), u —v))dé. To pass to the limit in the nonlinear term, we can note that, by
construction,

v < 1)

and we are in a position to use Lebesgue’s dominated convergence theorem (recall that,
since v is an admissible test function, then f;(v) € L((0,T) x Q) ; also note that u and v
belong to L*((0, T) X Q)).

We now need to prove the separation property (i). To do so, we note that, owing to
(4.29)-(4.30), f1.n(u") is uniformly (with respect to N) bounded in L'((0,T)x Q). Then,
owing to the explicit expression of fj y, we have

meas{(t, x) € (0, T) x Q, [uM(t,x)| > 1 — l} ¢ 3 M >N, (4.58)

S—
N~ fi(1-4

where the constant ¢ is independent of M > N and N (note that f; and f) 5 are odd
functions). Indeed, there holds

T
1
f f i @ldxdr > f i @™ldxdt > ¢measExp)fi(1 - —),
0 Q Enm N

where

1
EN,M = {(t’ x) € (O’ T) X Qa |MM(t9 x)l >1- N}’

the constant ¢’ being independent of N and M. Passing to the limit M — +co (employing
Fatou’s Lemma) and then N — +co (noting that f;(1— %) — +ooas N — +o0)in (4.58),
it follows that

meas{(t,x) € (0, T) x Q,u(t,x)| > 1} =0, (4.59)
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hence the separation property.

In order to complete the proof of existence, there remains to prove (iv). To do so, we
note that it follows from the almost everywhere convergence of u" to u, the separation
property (1) and the explicit expression of f; y again that

fin@™) = fi(u) a.e.in (0, T) x Q.

Then, we deduce from Fatou’s lemma that

. . N
ILf @Ol 0.1xey < iminf || fiy(u ™)L 0.r)xq) < +©0,

which finishes the proof of existence. O

Remark 4.4.2. A natural question is whether a solution in the sense of Definition 4.4.1
is a classical variational solution (i.e., it satisfies a variational equality instead of a
variational inequality). To prove this, one solution is to obtain a uniform (with respect
to N) bound on fiyu") in LP((0,T) X Q), for some p > 1 (and not just for p = 1).
Unfortunately, we have not been able to derive such an estimate when k > 2, so that
the question of whether a variational solution is a classical (variational) one is an open
problem.

It follows from Theorem 4.4.1 that we can define the family of operators S () : ® —
D, uy — u(t),t > 0, where
®={veH(Q),-1 <vx)<lae x€Q}

This family of operators forms a semigroup (i.e., S (0) = I (identity operator) and S ( +
7) = S(¢) o S(1), t,7 > 0) which is , owing to (4.56), continuous in the L*>~topology.
Furthermore, it follows from (4.36) (which also holds in the limit N — +oco) that this
semigroup is dissipative, in the sense that it possesses a bounded absorbing set 8, C ®
(i.e., VB c ® bounded, dty) = #,(B) > 0 such thatt > t) = S (t)B C By).

It then follows from (4.56) that we can actually extend (in a unique way and by
continuity) S () to the closure of ® in the L>—topology, namely,

S : 0 = 0, >0,

where

D) ={velL” V=)

It also follows from the a priori estimates derived in the previous section that S (¢) ins-
tantaneously regularizes, i.e.,

S :P; - O, t>0,
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and that it possesses a bounded absorbing set B, which is compact in L*(€2) and bounded
in H*'(Q). We thus deduce from standard results (see, e.g., [103] and [127]) that we
have the

Theorem 4.4.2. The semigroup S (t) possesses the global attractor A which is compact
in L>(Q) and bounded in H*'(Q).

Remark 4.4.3. We recall that the global attractor A is the smallest (for the inclusion)
compact set of the phase space which is invariant by the flow (i.e., S(t)A = A, YVt > 0)
and attracts all bounded sets of initial data as time goes to infinity ; it thus appears as
a suitable object in view of the study of the asymptotic behavior of the system. We refer
the reader to, e.g., [103] and [127] for more details and discussions on this.

Remark 4.4.4. An important question is whether the global attractor ‘A has finite di-
mension, in the sense of covering dimensions such as the Hausdorff and the fractal
dimensions. The finite-dimensionality means, very roughly speaking, that, even though
the initial phase space has infinite dimension, the reduced dynamics can be described
by a finite number of parameters (we refer the interested reader to, e.g., [103] and [127]
for discussions on this subject). When k = 1, i.e., for the classical Allen-Cahn equation,
this can easily be established, owing again to the strict separation from the singular
values +1 (see, e.g., [94]). However, when k > 2, the situation is much more involved
and one idea could be to proceed as in [104]. This will be addressed elsewhere.

Remark 4.4.5. We can adapt the above analysis to the higher-order Cahn-Hilliard mo-
del

P
(—A)-la—”t’ + P(~A)u + f(u) = 0, (4.60)
u=Au=---=A"'u=0,onT, (4.61)
Ltltz() = Uy. (462)

where P and f are as above. In particular, for k = 1, we recover the classical Cahn-
Hilliard equation which describes phase separation processes (spinodal decomposition
and coarsening) in binary alloys (see [19], [20] and the review papers [36] and [108]
for more details). When k = 2, the model contains sixth-order Cahn-Hilliard models.
We can note that there is currently a strong interest in the study of sixth-order Cahn-
Hilliard equations. Such equations arise in situations such as strong anisotropy effects
being taken into account in phase separation processes (see [128]), atomistic models of
crystal growth (see, [8], [9] and [56]), the description of growing crystalline surfaces
with small slopes which undergo faceting (see [122]), oil-water-surfactant mixtures (see
[68] and [69]) and mixtures of polymer molecules (see [50]). We refer the reader to
[40], [75], [76], [79], [84], [85], [95], [96], [97], [99], [115], [116], [117], [118],
[135], [136] and [137] for the mathematical and numerical analysis of such models.
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Chapitre 5

Higher-order anisotropic models in
phase separation

Modeles anisotropes d’ordre élevé en
séparation de phase

Ce chapitre est constitué de 1’article Higher-order anisotropic models in phase sepa-
ration accepté pour publication dans le journal Advances in Nonlinear Analysis, (2017).
Cet article est écrit en collaboration avec Laurence Cherfils et Alain Miranville.
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5.1 Introduction

The Allen-Cahn (see [4]) and Cahn-Hilliard (see [19] and [20]) equations are cen-
tral in materials science. They both describe important qualitative features of binary
alloys, namely, the ordering of atoms for the Allen-Cahn equation and phase separation
processes (spinodal decomposition and coarsening) for the Cahn-Hilliard equation.

These two equations have been much studied from a mathematical point of view ;
we refer the readers to the review papers [36] and [108] and the references therein.

Both equations are based on the so-called Ginzburg-Landau free energy,

YL = f(%IVulz + F(u))dx, a >0, (5.1)
Q
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where u is the order parameter, F' is a double-well potential and € is the domain oc-
cupied by the system (we assume here that it is a bounded and regular domain of R?,
with boundary I'; we can of course also consider bounded and regular domains of R
and R?). The Allen-Cahn equation (which corresponds to an L*-gradient flow of the
Ginzburg-Landau free energy) then reads

ou
i alAu + f(u) =0, (5.2)

where f = F’, while the Cahn-Hilliard equation (which corresponds to an H~!-gradient
flow) reads

% +aANu—Af(u) = 0. (5.3)

In (5.1), the term |Vu|*> models short-ranged interactions. It is however interesting
to note that such a term is obtained by truncation of higher-order ones (see [20]); it
can also be seen as a first-order approximation of a nonlocal term accounting for long-
ranged interactions (see [65] and [66]).

G. Caginalp and E. Esenturk recently proposed in [23] (see also [22]) higher-order
phase-field models in order to account for anisotropic interfaces (see also [80], [125]
and [132] for other approaches which, however, do not provide an explicit way to com-
pute the anisotropy). More precisely, these authors proposed the following modified free
energy, in which we omit the temperature :

1 k
b Y = f(— aal.Z)”ul2 + F(u)dx, k € N, 5.4)
o= [A3

i=1 |al=i

where, for @ = (k;, ka2, k3) € (N U {0})3,

la| = ki + ko + k3
and, for a # (0,0, 0),
N o

(we agree that D00y = ),
The corresponding higher-order Allen-Cahn and Cahn-Hilliard equations then read

du c i @
5 ;(—1) Zaal)z u+ fw)=0 (5.5)

=i

and
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8” : i a
5 —A;(—l) > a,D*u - Af(u) = 0. (5.6)

=i

We studied in [32] (see also [33]) the corresponding higher-order isotropic models,
namely,

% + P(—=Nu+ f(u) =0 (5.7)
and
% — AP(=N)u — Af(u) =0, (5.8)
where

k
P(s) = Zaisi, a,>0,k>1, seR.
i=1

In particular, these models contain sixth-order Cahn-Hilliard models. We can note
that there is currently a strong interest in the study of sixth-order Cahn-Hilliard equa-
tions. Such equations arise in situations such as strong anisotropy effects being taken
into account in phase separation processes (see [128]), atomistic models of crystal
growth (see [8], [9], [45] and [56]), the description of growing crystalline surfaces with
small slopes which undergo faceting (see [119]), oil-water-surfactant mixtures (see [68]
and [69]) and mixtures of polymer molecules (see [50]). We refer the reader to [40], [75],
[76], [79], [84], [85], [95], [96], [97], [99], [115], [116], [117], [118], [135], [136] and
[137] for the mathematical and numerical analysis of such models. They also contain
the Swift-Hohenberg equation (see [96] and [99]).

Our aim in this paper is to study the well-posedness of (5.5) and (5.6). We also prove
the dissipativity of the corresponding solution operators, as well as the existence of
the global attractor. We finally give, for the Allen-Cahn models, numerical simulations
which show the effects of the higher-order terms and the anisotropy.

5.2 Preliminaries

We assume that k € IN, k > 2, and

a, >0, |o| =k, (5.9

and we introduce the elliptic operator A; defined by

77



Chapitre 5. Higher-order anisotropic models in phase separation

(A, Wiy = ), Aa((D"v, D'w)), (5.10)

lol=k

where H*(Q) is the topological dual of H’g(Q). Furthermore, ((-,-)) denotes the usual
[?-scalar product, with associated norm || - ||. More generally, we denote by || - ||x the
norm on the Banach space X ; we also set || - ||-; = ||(—A)‘% -|l, where (=A)~! denotes the
inverse minus Laplace operator associated with Dirichlet boundary conditions. We can
note that

(v, w) € HYQP - > au((D"y, D))

=k

is bilinear, symmetric, continuous and coercive, so that

Ay HY(Q) —» H Q)
is indeed well defined. It then follows from elliptic regularity results for linear elliptic
operators of order 2k (see [1], [2] and [3]) that A, is a strictly positive, selfadjoint and
unbounded linear operator with compact inverse, with domain
D(Ay) = H*(Q) N H§(€),
where, for v € D(Ay),
A = (=1 Y a, 0.

le|=k
We further note that D(Ak%) = H{(Q) and, for (v, w) € D(AI% )2,
(A7v,Alw)) = Z ao (D, DW)).
lal=k

- |]) is equivalent to the usual

We finally note that (see, e.g., [127]) ||Ax - || (resp., IIAZ

1
H?*-norm (resp., H*-norm) on D(Ay) (resp., D(A})).
Similarly, we can define the linear operator Ap = —AA,,

Ay HYY(Q) » HEN(Q)

which is a strictly positive, selfadjoint and unbounded linear operator with compact
inverse, with domain

D(Ay) = H**2(Q) n HEY(Q),
where, for v € D(Zk),
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A = (=DFIA Z a, D>y,

|or|=k

1 1
Furthermore, D(A;) = H;'(Q) and, for (v,w) € D(A; )%,

(A2v, A2 w)) = D au((VD, VD W),

lol=k

— 1
Besides, [|A; - || (resp., [|A; - ||) is equivalent to the usual H**?-norm (resp., H**!-norm)
— 1
on D(Ay) (resp., D(A})).

We finally consider the operator A, = (—A)~' A, where
Av i Hy '(Q) - H(Q;

note that, as —A and A, commute, then the same holds for (—~A)~"' and Ay, so that A; =
A(=A)71
We have the

Lemma 5.2.1. The operator Ay is a strictly positive, selfadjoint and unbounded linear
operator with compact inverse, with domain

D(Ay) = H*(Q) n Hy (),
where, for v € D(Ay),
Ay =1k Z a4y D™ (~A) .
lal=k

Furthermore, D(A}) = HY™'(Q) and, for (v,w) € D(A})%,
(A, Apw) = > (D (=A)2v, D (=A) T w)).
la|=k
- 1
Besides, ||Ay - || (resp., [|A] - ||) is equivalent to the usual H*~2_norm (resp., H*"'-norm)

on D(Ay) (resp., D(A% )).

Proof. We first note that A, clearly is linear and unbounded. Then, since (-=A)~" and A,
commute, it easily follows that Ay is selfadjoint.
Next, the domain of Ay is defined by
D(AY) = {ve HY ' (Q), Aw € LA(Q)).
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Noting that Aw = f, f € LX(Q), v € D(Ay), is equivalent to Ayv = —Af, where —Af €
H*(Q)', it follows from the elliptic regularity results of [1], [2] and [3] that v € H*~2(Q),
so that D(Ay) = H*2(Q) N HE'(Q).

Noting then that A" maps L*(Q) onto H*~2(Q) and recalling that k > 2, we deduce
that A; has compact inverse.

We now note that, considering the spectral properties of —A and A; (see, e.g., [127])
and recalling that these two operators commute, —A and A; have a spectral basis formed
of common eigenvectors. This yields that, Vs, s, € R, (-A)** and A}? commute.

~1 1 ~1
Having this, we see that A} = (—A)‘%A,ﬁ, so that D(A}) = H’g‘l(Q), and, for (v,w) €
~1
D(A}),

~1 ~1
Ay, Aw)) = > (D (=A) 2y, D (=A) T w)).
lal=k
Finally, as far as the equivalences of norms are concerned, we can note that, for
~1
instance, the norm [|A; - || is equivalent to the norm ||(—A)‘% * |l and, thus, to the
norm [[(=4)7" - .
]
Throughout the paper, the same letters ¢, ¢’ and ¢”” denote (generally positive) constants
which may vary from line to line. Similarly, the same letter Q denotes (positive) mono-
tone increasing and continuous functions which may vary from line to line.

5.3 The Allen-Cahn theory

5.3.1 Setting of the problem

We consider in this section the following initial and boundary value problem, for
k > 2 (for k = 1, the problem can be treated as in the original Allen-Cahn equation ; see,

e.g., [32]):

au : i 20
T ;(—1) éaa@ u+ fw) =0, (5.11)
Du=00nT, |o| <k-1, (5.12)
I/t|t:0 = Uy. (513)

Remark 5.3.1. For k = 1 (anisotropic Allen-Cahn equation), we have an equation of
the form
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u = Ou
- _ - -0
o Z‘ “iga T

1

and, for k = 2 (fourth-order anisotropic Allen-Cahn equation), we have an equation of
the form
< d*u 8%
+ ——— ) bi— + f(u) =0.
2. 2 biga + fw

— ai .
ot £V ex20x2
i,j=1 [ |

We actually rewrite (5.11) in the equivalent form
ou
e + Aju + Bru + f(u) =0, (5.14)
where

By = kj(-l)" Z a, D™,
i=1

lal=i

As far as the nonlinear term f is concerned, we assume that

feC'(R), f(0) =0, (5.15)

[ = —co, co 20, (5.16)

f(s)s > c1F(s)—c; > —c3, ¢c1 >0, ¢, c320, s €R, (5.17)
F(s)>cus* —cs,¢4>0,¢520, seR, (5.18)

where F(s) = fos f(&)dé. In particular, the usual cubic nonlinear term f(s) = s° — s
satisfies these assumptions.

5.3.2 A priori estimates

We multiply (5.14) by %—Lt‘ and integrate over €2 and by parts. This gives

d 1 1 ou
d—t(llAlzull2 + Bl [u] +2 f F(u)dx) + 2||E||2 =0, (5.19)

Q

where
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k-1
[u] = ao| D ull? (5.20)

i=1 |a|=i

B

= l—

1
(note that B} [u] is not necessarily nonnegative). We can note that, owing to the interpo-
lation inequality

Mz < @IV VI, (5.21)
ve H"(Q), ie{l,...m—-1}, me N, m> 2,
there holds

3 L4 2
|B; [u]| < §||Ak ull” + cllull”. (5.22)

This yields, employing (5.18),

IAZull? + B? [u] + 2f

1 1
F(u)dxz5||A,§u||2+fF(u)dx+c||u||4 —ull? - ¢,
Q Q

LA

whence

1 1
A, ull> + Bl [u] +2 f F(u)dx > C(||M||§,k(9) + fF(u) dx)—c’, ¢ >0, (5.23)
Q Q
noting that, owing to Young’s inequality,

lull® < €llull}s g, + c(€), Ve > 0. (5.24)
We then multiply (5.14) by u and have, owing to (5.17) and the interpolation inequa-

lity (5.21),

d ’ 7’
EwW+mwm@+fﬁwmm$uw%w,
Q

hence, proceeding as above and employing, in particular, (5.18),

d ,
EHullz + c(llullfu o, + fQF(u) dx)<c, ¢>0. (5.25)
Summing (5.19) and (5.25), we obtain a differential inequality of the form
dE d
d—tl + c(E + ||a—”t‘||2) <, >0, (5.26)

where
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1 1
Ey = AZul* + B2 [u] +2

S

F(u)dx + |lul?
Q

satisfies, owing to (5.23),

Ey = c(lullfyq, + f F(uydx)—¢', ¢ >0, (5.27)
Q

Note indeed that
E; < cllullyyq, +2 f F(u)dx
Q

< C(||M||Zk(g) + fF(u) dx)—c¢’, ¢>0,c >0.
Q

It follows from (5.26)-(5.27) and Gronwall’s lemma that

()2 < €™ UlttollZe gy + f Fup)dx) +¢", ¢ >0, 1 >0, (5.28)
Q

and

1+r a ,
f I151P ds < ce™(luoll g+ f F(ug)dx)+c”, ¢’ >0, 1> 0, r > 0 given. (5.29)
t Q

Next, we multiply (5.14) by Au and find, owing to the interpolation inequality
(5.21),

d 1
d—tllA,f ull® + CIIMII?,%(Q) < c(llull® + I fF@)IP). (5.30)

It follows from the continuity of f and F, the continuous embedding H*(Q) c Cc(Q)
(recall that k > 2) and (5.28) that

llall® + 1F@)IP < Q) (5.3D
< e " Olluollgr) + ¢, ¢ >0, t >0,
so that
d 1 ,
d—tnA;un2 + cllullf gy < € Qlluolley) + ¢, ¢, ¢/ >0, 1 >0. (5.32)

Summing (5.26) and (5.32), we have a differential inequality of the form

dE Ou -’ ” ’
d_tz + c(Ey + ||M||sz(g) + ”5”2) < e " Olluollry) +¢”, ¢, ¢ >0, >0, (5.33)
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where
Ey = E\ +|Aful?
satisfies
Ey > c(lullfy o, + fg Fu)dx)—c’, ¢>0. (5.34)
We then rewrite (5.14) as an elliptic equation, for ¢ > 0 fixed,
Agu = —% —Biu— f(u), D'u=0onT, |a| <k-1. (5.35)
Multiplying (5.35) by Aiu, we obtain, owing to the interpolation inequality (5.21),
All® < elull® + lf > + II%IIZ), (5.36)
hence, owing to (5.31),
2l ey < (e Qlluoll () + II%IIZ) +c”, ¢ > 0. (5.37)

Next, we differentiate (5.14) with respect to time and find

0 Ou ou ou ., Ou
E‘E + Aka + Bka + f (M)E = 0, (538)
ou
Z)QE =0onT, |o <k-1, (5.39)
ou
Ehzo = —Ayuo — Brug — f(uo). (5.40)

We can note that, if uy € H*(€) N H&(Q) (= D(Ay)), then %4(0) € L*(Q) and

0
ugmmmmmmy (5.41)

We multiply (5.38) by % and have, owing to (5.16) and the interpolation inequality
(5.21),

d Ou ou , Ou
E”E”z + Cllgllik(g) <c IIEIIZ, c>0. (5.42)

It follows from (5.29) (for r = 1), (5.42) and the uniform Gronwall’s lemma that
Ou 2 —ct ’
IIE(I)II < e " Oluollgr@) + ¢, ¢ >0, 121, (5.43)

84



5.3. The Allen-Cahn theory
and from (5.41)-(5.42) and Gronwall’s lemma that

ou
IIE(t)II2 < e“ Qlluoll ), t = 0. (5.44)
We finally deduce from (5.37) and (5.43)-(5.44) that

o) g2 () < e_C[Q(”uO”H"(Q)) +c,c>0,1>1, (5.45)

and

”u(t)”HZk(Q) < e_ClQ(”uO”HZk(Q)) + C,, c > 0, > 0. (546)

5.3.3 The dissipative semigroup
We have the

Theorem 5.3.1. (i) We assume that u, € H’g(Q). Then, (5.11)-(5.13) possesses a unique
weak solution u such that, VT > 0,
u € L(R*; Hy(Q)) N L*(0, T; H*(Q) N H{(Q))

and

ou

— € LX0,T; L*(Q)).

o ( (€2)
(ii) If we further assume that uy € H*(Q) N HS(Q), then

u € L*(R*; H*(Q) N HY(Q)).

Proof. The proofs of existence and regularity in (i) and (ii) follow from the a priori
estimates derived in the previous subsection and, e.g., a standard Galerkin scheme.

Let now u; and u, be two solutions to (5.11)-(5.12) with initial data uy; and ug,,
respectively. We set u = u; — up and uy = up; — up, and have

P
(9_1; + At + Bt + f(uy) — f(u) = O, (5.47)
Du=0onT, |of <k-1, (5.48)
ul—o = uo. (5.49)

Multiplying (5.47) by u, we obtain, owing to (5.16) and the interpolation inequality
(5.21),
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d ,
EIIMII2 + cllullf g, < € Null?, ¢ > 0. (5.50)

It follows from (5.50) and Gronwall’s lemma that

lu()I* < e“lluoll*, t = 0, (5.51)

hence the uniqueness, as well as the continuous dependence with respect to the initial
data in the L?-norm.
O
It follows from Theorem 5.3.1 that we can define the continuous (for the L?>-norm)
semigroup S(t) : ® — @, uy — u(t),t > 0 (i.e., S(0) = [ (identity operator) and
St+1)=8S@®)oS(),t,7>0), where ® = Hg(Q). Furthermore, S (¢) is dissipative in
@, owing to (5.28), in the sense that it possesses a bounded absorbing set 8y C @ (i.e.,
VB c ® bounded, ¢y = 7o(B) > O such thatt > 1y = S(t)B C By).

Remark 5.3.2. We can also prove the continuous dependence with respect to the initial
data in the H*- and H*-norms and it then follows from (5.46) that S (t) is defined,
continuous and dissipative in (H*(Q) N Hg(Q)).

Actually, it follows from (5.45) that S (¢) possesses a bounded absorbing set $; such
that B, is compact in ® and bounded in H?**(Q). It thus follows from classical results
(see, e.g., [103] and [127]) that we have the

Theorem 5.3.2. The semigroup S (t) possesses the global attractor A which is compact
in ® and bounded in H*(Q).

Remark 5.3.3. It follows from (5.51) that we can extend S (t) (by continuity and in a
unique way) to L*(Q).

Remark 5.3.4. (i) We recall that the global attractor A is the smallest (for the inclusion)
compact set of the phase space which is invariant by the flow (i.e., S(t)A = A, Yt > 0)
and attracts all bounded sets of initial data as time goes to infinity ; it thus appears as
a suitable object in view of the study of the asymptotic behavior of the system. We refer
the reader to, e.g., [103] and [127] for more details and discussions on this.

(ii) We can also prove, based on standard arguments (see, e.g., [103] and [127]) that
A has finite dimension, in the sense of covering dimensions such as the Hausdorff and
the fractal dimensions. The finite-dimensionality means, very roughly speaking, that,
even though the initial phase space has infinite dimension, the reduced dynamics can be
described by a finite number of parameters (we refer the interested reader to, e.g., [103]
and [127] for discussions on this subject).
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Remark 5.3.5. We can also consider periodic boundary conditions, namely,

u is Q — periodic,

in which case Q = H?ZI(O, L), L; > 0,i € {l1,2,3}. In that case, we consider the operator
Ay = I + Ay (in order to have a strictly positive operator), where Ay is as above, but
based on Sobolev spaces with periodic functions (see, e.g., [127]), and rewrite (5.11) in
the form

% + Awu + Bu + g(u) =0,

where g(s) = f(s)—s (note that g satisfies properties which are similar to (5.15)-(5.18)).

5.4 The Cahn-Hilliard theory

5.4.1 Setting of the problem

We consider the following initial and boundary value problem, for k € N, k > 2 (the
case k = 1 can be treated as in the original Cahn-Hilliard equation ; see, e.g., [32]) :

0 S
a—bt‘ —AY (1)) 4, D*u - Af(u) = 0, (5.52)
i=1 la|=i
Du=0onT, |af <k, (5.53)
Mlt:() = Uy. (554)

Remark 5.4.1. For k = 1 (anisotropic Cahn-Hilliard equation), we have an equation of
the form

ou > u
E +A;ai(§ —Af(u) =0

1

and, for k = 2 (fourth-order anisotropic Cahn-Hilliard equation), we have an equation
of the form
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Keeping the same notation as in the previous section, we rewrite (5.52) as

8
6—”; — Ayt — ABui — Af(u) = 0. (5.55)

As far as the nonlinear term f is concerned, we assume that the assumptions of the
previous section hold and that f is of class C>.

5.4.2 A priori estimates
We multiply (5.55) by (-A)™! %L; . This gives

d 1 1 ou
d—t(llAi ull> + Bl[u] +2 f F(u)dx) + ZIIEH%l =0. (5.56)

Q
We then multiply (5.55) by (—=A)~'u and have, owing to (5.17) and the interpolation

inequality (5.21) and proceeding as in the previous section,

d ,
E||u||%1 + c(llullfy g, + fQF(u) dx)<c, ¢>0. (5.57)
Summing (5.56) and (5.57), we obtain a differential inequality of the form
dE3 ou ,
— teEst IIEIEI) <c,c>0, (5.58)
where
1 1
Es = ||AZull® + B} [u] + 2fF(u) dx + ||ul?,
Q
satisfies

Es > c(lullfy g, + f Fu)dx)—c’, ¢>0. (5.59)
Q

It follows from (5.58)-(5.59) and Gronwall’s lemma that

@)l ) < e Uluolljuqy + | Flto)dx) +¢”, ¢’ >0, =0, (5.60)

5

and

r+r au )
f ”E”El ds < ce_”(”uolli,k(g) + fF(uo) dx)+c”, ¢ >0,t>0, r>0 given.
! Q

(5.61)
Multiplying next (5.55) by A.u, we find, owing to the interpolation inequality (5.21)
and proceeding as in the previous section,
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5.4. The Cahn-Hilliard theory

d -1 o 2 —
EIIA,i ull” + cllullypr g, < €™ Qlluollaney) + ¢, ¢, ¢ >0, 1> 0. (5.62)

Summing (5.58) and (5.62), we have a differential inequality of the form

dE4 Ou -’ ’” ’
ot c(Eq + IIMIIZZk(Q) + IIEIEI) < e "Qluollgr) + ¢, ¢, ¢ >0, >0, (5.63)
where
o,
Ey = E5 + [|[Alull
satisfies

Ey > c(lullfy g, + f Fu)dx)—c', ¢>0. (5.64)
Q
We also multiply (5.55) by g—'t‘ and obtain, noting that f is of class C?,
d _% 2 _% du 2 —c't 7 ’
2 Acull” + By fu]) + M =-1” < e Qlluolln) + ¢, ¢, ¢ >0, (5.65)
where

: k-1
Bilul = ) > adllVD"ulP.

i=1 |a|=i

Summing finally (5.63) and (5.65), we find a differential inequality of the form

dE ou o . ,
d_ts + C(Es + llullypu g + IIEIP) < e " Qluollgr) +¢”s ¢, ¢ >0, 120, (5.66)

where

1 1
Es = E; + ||A ull* + B} [u]

satisfies
Es > c(lull}n o) + f Fu)dx)—c', ¢>0. (5.67)
Q
In particular, it follows from (5.66)-(5.67) that

||u(l)||Hk+l(Q) < e_CtQ(”u()”HkH(Q)) + C,, Cc > O, t> 0. (568)

We then differentiate (5.55) with respect to time and have
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0 ou ou ou

aor AAg ar T ABkE — A(f'(u )—) = (5.69)
Ou
@QE =0onT, | <k (5.70)

We multiply (5.69) by (—A)~ 1 , and obtain, owing to (5.16) and the interpolation
inequality (5.21),

d Ou

2 Un
E”E” ” ||Hk(Q) ||E|| , C> O’
which yields, employing the interpolation inequality
VI < eVl Vil @) v € Ho(€), (5.71)
the differential inequality
d ou ou , Ou
E”E”El + C”E”i[k(g) sc HEHEI’ c>0. (5.72)

In particular, this yields, owing to (5.61) and employing the uniform Gronwall’s lemma,

0 .
155 Oll1 < e Qllollsay) + s ¢ > 0, £ 1, > 0 given. (5.73)

We finally rewrite (5.55) as an elliptic equation, for > 0 fixed,

o
At = —(—A)‘la—b; — B~ f(u), D'u=0o0nT, o] <k-—1. (5.74)

Multiplying (5.74) by Axu, we find, owing to the interpolation inequality (5.21),

el 321y < (e Qlluollztce) + ||—||21) +c”, ¢ >0. (5.75)

In particular, it follows from (5.73) (for r = 1) and (5.75) that

lu®llz) < € Qlugllnq) + ¢, ¢ >0, > 1. (5.76)

Remark 5.4.2. If we assume that uy € H**'(Q)N HS(Q), we deduce from (5.72), (5.75)
and Gronwall’s lemma an H*-estimate on u on [0, 1] which, combined with (5.76),
gives an H*-estimate on u, for all times. This is however not satisfactory, in particular,
in view of the study of attractors.
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. . . T Ou

Rel;llark 5.4.3. We further assume that f is of class C**'. Multiplying (5.55) by A,
we have

3 Ou

vl

1d =1 ou ! .
id_t(”Akullz + ((Axu, Buw))) + ||A] Ell2 = —((A; f(w),A

_1
which yields, noting that ||A; fW)|* < O(|ull g1 () and owing to (5.68),

d : :
a,—t(IIAkMII2 + (A, Baw))) < e Qlluol 1) + ¢y ¢ >0, £ 0. (5.77)

Combining (5.77) with (5.66), it follows from (5.67) and the interpolation inequality
(5.21) that

(Ol 2y < Ollutoll ), t € [0, 1],
so that, owing to (5.76),

lu@®llz@) < € Qlugllg@) + ¢, ¢ >0, 1> 0. (5.78)

5.4.3 The dissipative semigroup
We have the

Theorem 5.4.1. (i) We assume that u, € HS(Q). Then, (5.52)-(5.54) possesses a unique
weak solution u such that, YT > 0,

u € L(R*; Hy(Q)) N L*(0, T; H*(Q) N H{(Q))
and

% e L*(0,T; H'(Q)).

(ii) If we further assume that uy € H**'(Q) N H(Q), then, VT > 0,

u € L (R*; H*'(Q) N H(Q))

and

ou
— € LX0,T:; L*(Q)).
5 © 0, T; L*(Q))

(iii) If we further assume that f is of class C**' and uy € H*(Q) N H(Q), then

u € L (R*; H*(Q) N Hi(Q)).
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Proof.
The proofs of existence and regularity in (i), (i1) and (iii) follow from the a priori
estimates derived in the previous subsection and, e.g., a standard Galerkin scheme.

Let now u; and u, be two solutions to (5.52)-(5.53) with initial data ug; and u,
respectively. We set u = u; — u, and uy = up; — 1y, and have

ou
i AAu — AByu — A(f(uy) — f(up)) = 0, (5.79)
DU=0onT, |a| <k, (5.80)
Uli=o = up. (5.81)

Multiplying (5.79) by (=A)~'u, we obtain, owing to (5.16) and the interpolation
inequalities (5.21) and (5.71),

d ,
Sl + el ) < €l ¢ > 0. (5.82)

It follows from (5.82) and Gronwall’s lemma that

lu@I?, < e“lluol*,, t =0, (5.83)

hence the uniqueness, as well as the continuous dependence with respect to the initial
data in the H~'-norm.
O
It follows from Theorem 5.4.1 that we can define the family of solving operators

S@): D> D, uy > u®@), t >0,

where ® = Hj(€). This family of solving operators forms a semigroup which is conti-
nuous with respect to the H™!-topology. Finally, it follows from (5.60) that we have
the

Theorem 5.4.2. The semigroup S (t) is dissipative in ©.

Remark 5.4.4. (i) Actually, it follows from (5.76) that we have a bounded absorbing
set By which is compact in ® and bounded in H**(Q). This yields the existence of the
global attractor A which is compact in ® and bounded in H*(Q).

(ii) It follows from (5.78) that, if f is of class C**, then S (¢) is dissipative in H**(Q) N
H(Q).

(iii) It follows from (5.83) that we can extend S (t) (by continuity and in a unique way)
to H'(Q).
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Remark 5.4.5. The case of periodic boundary conditions is more delicate, since, inte-
grating (formally) (5.52) over Q, we have the conservation of mass, namely,

(u(0)) = Cup), t 20,

where (-) = w+(m fQ -dx. As a consequence, we cannot expect to find compact attractors
on the whole phase space and have to deal with the nonlocal term {f(u)) (see, e.g.,

[127]).

5.5 Numerical simulations

I

FiGure 5.1 — Computational domain : Q = (0, 1) x (0, 1).

In this section, we give numerical simulations which show the effects of the ani-
sotropy for the generalized Allen-Cahn equations when k = 1, 2 and 3 in the domain
Q =(0,1)x (0, 1) (see Figure 5.1). In particular, this shows how the coefficients of hi-
ghest orders affect the solutions. Furthermore, we compare the solutions when different
k’s, time steps or coeflicients are taken.

The numerical method applied here is a P1—finite element in space and a forward
Euler discretization in time. The numerical simulations are performed with the software
Freefem++ (see [77]).

For instance, when k = 2, the generalized Allen-Cahn equation reads

ou 0*u o*u 0*u 0*u 0*u
E +020% +a026_y4 "‘auway2 _310@ —61016—))2 + fu) =0, (5.84)

where, here and in all the simulations, f(s) = s° — s. We further assume that u is

Q-—periodic. Finally, we take as initial condition a cross in the center of the compu-
tational domain, that is, the initial value in the middle cross is —0.8, while, in the com-
plementary set, it is equal to 0.8, as shown in the following Figure 5.2.
Setting 2% = w and £% = p, then, integrating by parts, the system which needs to
g(')xz_w (9y2—p’ ’ g g yp ’ y w
be solved reads
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(G, v) — axn(32, 2) — an(E, 3 — an (92, ) + an(3, 3 + an (3, )
+(f(u),v) =0
(@.) = =34 50).
(P.0) = -(54 5,
(5.85)

where the test functions v, &, £ all belong to H },er(Q)

Next, we introduce the discretization .7, of Q and set

Vi = {vi, € C%Q), W)k € P1, YK € T, vy is Q — periodic} ¢ H (Q).

per

As mentioned above, we use a P;—finite element for the space discretization and a for-
ward Euler scheme for the time discretization. Let ug € V,,. Then, for n > 0, we look for
(u”” n+1,pz+l) eV, xV,xV, such that

- an(M 1, a,C) a2, ay>
_all( y ’ By o ’ Bx) + a()l( dy ° 6y) + (f(uh) V) (MZ,V) =0 (586)
(&) =~ a,)

Au*!
.0 = ;y 5,

forall v, & ¢ € V). We proceed in a similar way for k = 1 and 3. In particular, for k = 3,
we have to deal with a system of 5 second-order equations.

As far as the time step dt is concerned, when k = 1, we take df = 1077 (in Figure 5.3
and Figure 5.7), dt = 107° (in Figure 5.4 ) and dt = 10~ (in Figure 5.8). When k = 2,
we take dt = 1077 and, when k = 3, we take df = 107'° (in Figure 5.6 and Figure 5.12 )
and dt = 1078 (in Figure 5.10) or dt = 1077 (in Figure 5.3 and Figure 5.7). Here, we use
a grid with 150? points on the domain Q.

The next figure (Figure 5.2) shows the initial condition.

FiGure 5.2 — Initial condition.
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5.5.1 The isotropic case

When all the coefficients are set equal to 1, then, as expected, there is no isotropy.
The figures below however show the effects of higher-order terms.

(@) k=1,dt =107 (b) k=2,dt =107 (c) k=3,dt=10"

Ficure 5.3 — Results after 40 iterations with different k’s and the same time step size.

In the next figures, we take a different time step. We also note that the higher & is,
the smaller the time step has to be taken, since the solution evolves faster in time.

(a) t =100 x dt (b) t =250 x dt (c) t =1000 x dt (d) r =4000 x dt

FiGure 5.4 —k =1, dt = 107°.

(a) 1 = 40 x dt (b) ¢ = 400 x dt () ¢ = 2000 x dt (d) ¢ = 5000 x dt

FIGURES.5 -k =2, dt = 107",
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(a) t=40xdt (b) t =500 x dt (c) t =1000 x dt (d) r =2000 x dt

FIGURE 5.6 —k = 3, dt = 10719,

5.5.2 Anisotropy in the x—direction

We now illustrate anisotropic situations. We consider the following situations :

(i) k=1,ap=1and ay =0.01;

(i1) k = 2, ap9p = 1 and the other coefficients are set equal to 0.01 ;

(ii1) k = 3, a3y = 1 and the other coefficients are set equal to 0.01.

We first investigate the anisotropy in the x—direction after 40 iterations, comparing
different k’s when the time step is the same.

(@) () (©)
FIGlRES.7T—- (@) k=1,dt=10"7; b)) k=2,dt =1077;(c) k=3, dt = 107".

We then illustrate the case when k, as well as the time step, remain unchanged, but
the number of iterations increases.

(@) t=50xdt (b) t = 1000 x dt (c) t=2000 x dt (d) £+ =5000 x dt

FiGURE 5.8 —k =1, dt = 107°.
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(a) t=40xdt (b) t =400 x dt (c) +=2000 x dt (d) t = 5000 x dt

FIGURES5.9 —k =2, dt = 1077,

(a) 1 = 40 x dt (b) = 500 x dt () 1 = 1000 x dt (d) t = 2000 x dt

FiGure 5.10 — k = 3, dt = 1078.

We can note that we would have similar results in the y—direction.

5.5.3 Influence of the off-diagonal terms

We first note that, when k = 1, there is no cross term. We thus consider the following
two cases :

(i) k = 2, a;; = 1 and the other coefficients are set equal to 0.01.

(a) t=40xdt (b) t =400 x dt (c) +=2000 x dt (d) t = 5000 x dt

FiGURE 5.11 —k =2, dt = 107,

(i1) k = 3, ap; = 1 and the other coefficients are set equal to 0.01.
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(a) t=40xdt (b) t =250 x dt (c) t =1000 x dt (d) t = 5000 x dt

FIGURE 5.12 — k = 3, dt = 1079 : (a) after 40 iterations ; (b) after 250 iterations ; (c) after
1000 iterations ; (d) after 5000 iterations.
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Chapitre 6

Higher-order generalized
Cahn-Hilliard equations

Généralisations d’ordre élevé de I’équation de
Cahn-Hilliard

Ce chapitre est constitué de 1’article Higher-order generalized Cahn-Hilliard equa-
tions, Electronic Journal of Qualitative Theory of Differential Equations, Volume 9(2017),
1-22.

Cet article est écrit en collaboration avec Laurence Cherfils, Alain Miranville et Wen
Zhang.
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6.1 Introduction

The Cahn-Hilliard equation,
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ou
ot
plays an essential role in materials science and describes important qualitative features
of two-phase systems related with phase separation processes, assuming isotropy and a
constant temperature. This can be observed, e.g., when a binary alloy is cooled down
sufficiently. One then observes a partial nucleation (i.e., the apparition of nucleides in
the material) or a total nucleation, the so-called spinodal decomposition : the material
quickly becomes inhomogeneous, forming a fine-grained structure in which each of the
two components appears more or less alternatively. In a second stage, which is called
coarsening, occurs at a slower time scale and is less understood, these microstructures
coarsen. Such phenomena play an essential role in the mechanical properties of the
material, e.g., strength. We refer the reader to, e.g., [19], [20], [36], [43], [83], [87],
[105], [106], [107] and [108] for more details.
Here, u is the order parameter (e.g., a density of atoms) and f is the derivative of
a double-well potential F'. A thermodynamically relevant potential F is the following
logarithmic function which follows from a mean-field model :

+ A’u—Af(u) =0, (6.1)

0, 0 1- 1+
F(s) = 5(1=5)+5[(1=5) In(— %)+ (1+5) In( . ), se(=1,1), 0<0<6,, (62)
1.e.,
0. 1+
() = 65+ > In——, (6.3)
2 1-s
although such a function is very often approximated by regular ones, typically,
1
F(s) = Z(s2 -1y, (6.4)
i.e.,
f(s) =5 —s. (6.5)

Now, it is interesting to note that the Cahn-Hilliard equation and some of its variants
are also relevant in other phenomena than phase separation. We can mention, for ins-
tance, population dynamics (see [31]), tumor growth (see [7] and [86]), bacterial films
(see [81]), thin films (see [112] and [129]), image processing (see [8], [9], [21], [27] and
[42]) and even the rings of Saturn (see [130]) and the clustering of mussels (see [90]).

In particular, several such phenomena can be modeled by the following generalized
Cahn-Hilliard equation :

Ou

o ANu— Af(u) + g(x,u) = 0. (6.6)
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We studied in [97] and [99] (see also [7], [27], [37] and [47]) this equation.
The Cahn-Hilliard equation is based on the so-called Ginzburg-Landau free energy,

Yo = f (%Nm2 + F(u))dx, (6.7)
Q

where Q is the domain occupied by the system (we assume here that it is a bounded
and regular domain of R”, n = 1, 2 or 3, with boundary I'). In particular, in (6.7), the
term |Vu|> models short-ranged interactions. It is however interesting to note that such
a term is obtained by truncation of higher-order ones (see [20]) ; it can also be seen as
a first-order approximation of a nonlocal term accounting for long-ranged interactions
(see [65] and [66]).

G. Caginalp and E. Esenturk recently proposed in [23] (see also [22]) higher-order
phase-field models in order to account for anisotropic interfaces (see also [80], [125]
and [132] for other approaches which, however, do not provide an explicit way to com-
pute the anisotropy). More precisely, these authors proposed the following modified free
energy, in which we omit the temperature :

1 k
WhoaL = f (52 D@D ul + Faw)dx, ke N, (6.8)
Q

i=1 |al=i

where, for @ = (ky, ..., k,) € (N U {0})",
la| =k + ... + k,
and, for a # (0, ...,0),
N ol
- ﬁxll‘l...ﬁxﬁ”

(we agree that DO~y = v). The corresponding higher-order Cahn-Hilliard equation
then reads

du : i 2a
5 —A;(—l) éaa.@ u—Af(u) = 0. (6.9)
We studied in [32] and [33] the corresponding isotropic model which reads
ou
i AP(-ANu — Af(u) = 0, (6.10)

where

P(s) = as', ar >0, keN, seR.

1

k
=1
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The anisotropic model (6.9) is treated in [34].
Our aim in this paper is to study the higher-order generalized Cahn-Hillard model

9 a .
a—bt‘ - A;(—l)’ > @D u = Af(u) + g(x,u) = 0. 6.11)

|a|=i
In particular, we study the well-posedness and the regularity of solutions. We also prove
the dissipativity of the corresponding solution operators, as well as the existence of the

global attractor. We finally give numerical simulations which show the effects of the
higher-order terms and the anisotropy.

6.2 Setting of the problem

We consider the following initial and boundary value problem, for k € N, £ > 2 (the
case k = 1 can be treated as in [97]) :

k
% —A Z(—l)l’ Z 4o D™ u — Af(u) + g(x,u) = 0, (6.12)
i=1 |a|=i
D'u=00nT, |af <k, (6.13)
. (6.14)

We assume that

a, >0, |a| =k, (6.15)

and we introduce the elliptic operator A; defined by

A Wy = ) Gal(DV, DW)), (6.16)

lor|=k

where H7*(Q) is the topological dual of Hg(Q). Furthermore, ((-,-)) denotes the usual
L?-scalar product, with associated norm || - ||. More generally, we denote by || - ||y the
norm on the Banach space X ; we also set || - ||-; = ||(—A)‘% .||, where (=A)~! denotes the
inverse minus Laplace operator associated with Dirichlet boundary conditions. We can
note that

(v, w) € HYQP - > au((D"y, D))

lev|=k

is bilinear, symmetric, continuous and coercive, so that
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Ay HYQ) — H*(Q)

is indeed well defined. It then follows from elliptic regularity results for linear elliptic
operators of order 2k (see [1], [2] and [3]) that A, is a strictly positive, selfadjoint and
unbounded linear operator with compact inverse, with domain

D(Ay) = H*(Q) N Hy(©),
where, for v € D(Ay),

A = (=1 Z a4 D™,

lal=k
We further note that D(A?) = HX(Q) and, for (v, w) € D(A?)?,
(Afv, Afw) = ) au((D™, D)),
la=k

1
We finally note that (see, e.g., [127]) [|A - || (resp., [[A] - |]) is equivalent to the usual
H?-norm (resp., H*-norm) on D(Ay) (resp., D(A})).
Similarly, we can define the linear operator A; = —AA,
Ay HEYY(Q) » H(Q)

which is a strictly positive, selfadjoint and unbounded linear operator with compact
inverse, with domain

D(Ay) = H***(Q) n Hg*'(€),
where, for v € D(Ay),

Aw = (=AY @, 0.

lal=k

Furthermore, D(A;) = H{(Q) and, for (v, w) € D(A;),

(A2v, Al w)) = D au(VD, VD W),

lorl=k

_ 1
Besides, ||A; - || (resp., ||A{ - ||) is equivalent to the usual H**?-norm (resp., H**'-norm)
1

on D(Ay) (resp., D(.Z,f ).
We finally consider the operator A, = (—A)~' A, where

105



Chapitre 6. Higher-order generalized Cahn-Hilliard equations

A HYNQ) —» HH(Q);
note that, as —A and A, commute, then the same holds for (—A)~! and A;, so that A; =

A(=A)7.
We have the

Lemma 6.2.1. The operator Ay is a strictly positive, selfadjoint and unbounded linear
operator with compact inverse, with domain

D(Ay) = H*(Q) n Hy (),
where, for v € D(Ay),

Aw = (=1)F Z a, D™ (~A) .
lal=k

1 1
Furthermore, D(A}) = HS‘I(Q) and, for (v,w) € D(A] )2,

(Ajv.Ajw) = Z (D (=A) "2y, DY (—=A) "2 w)).

lal=k

- 1

Besides, Ay - || (resp., [|A; - ||) is equivalent to the usual H*=2_norm (resp., H*"'-norm)
- 1

on D(Ay) (resp., D(A})).

Proof.

We first note that A clearly is linear and unbounded. Then, since (—=A)~! and A,
commute, it easily follows that A, is selfadjoint.

Next, the domain of A, is defined by

D(AY) = {ve Hy (Q), Aw € L(Q)).

Noting that A,y = f, f € L*(Q), v € D(Ay), is equivalent to A,y = —Af, where —Af €
H*(Q), it follows from the elliptic regularity results of [1], [2] and [3] that v € H*72(Q),
so that D(A;) = H*2(Q) N H’g‘l(Q).

Noting then that A" maps L*(Q) onto H*~2(Q) and recalling that k > 2, we deduce
that A, has compact inverse.

We now note that, considering the spectral properties of —A and A, (see, e.g., [127])
and recalling that these two operators commute, —A and A, have a spectral basis formed
of common eigenvectors. This yields that, Vsy, s, € R, (-A)** and Aiz commute.

~1 1 ~1
Having this, we see that A} = (—A)‘éA,ﬁ, so that D(A}) = Hy™'(Q), and, for (v, w) €
~1
D(A})?,
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11
(A, Aiw) = ) au((D(=A) v, D (=AY 2w)).
la|=k
Finally, as far as the equivalences of norms are concerned, we can note that, for

-1
instance, the norm [|A; - || is equivalent to the norm ||(—A)‘% * ||+ and, thus, to the
norm [|(~A)=" - .

|
Having this, we rewrite (6.12) as
ou
i AAu — AByu — Af(u) + g(x,u) =0, (6.17)
where
k-1
By = Z(—Ui Z a4 D™,
i=1 l|=i
As far as the nonlinear term f is concerned, we assume that
feCR), f(0)=0, (6.18)
f' = =co, co 20, (6.19)
f(s)s > c1F(s)—cy; > —c3,¢c1 >0, ¢, c320, s €R, (6.20)
F(s)>cas* —cs, c4>0,¢5>0, seR, (6.21)

where F(s) = fos (&) dé. In particular, the usual cubic nonlinear term f(s) = §° — s
satisfies these assumptions.
Furthermore, as far as the function g is concerned, we assume that

g(-, s) is measurable, Vs € R, g(x,-) is of class C', ae. xeQ, (6.22)
0
a—g(., s) is measurable, Vs € R;
S
lg(x, s)| < h(s), a.e. x€ Q, s € R, (6.23)

where /4 > 0 is continuous and satisfies
[1EWIIVII <€ sf Fv)dx +c., Ye >0, (6.24)
Q
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Vv € L*(Q) such that [ F(v)dx < +co, and

IW($)? < c6F(s) +c7, ¢, 720, s €R; (6.25)

0
Ia—g(x, S <I(s), ae. xeQ, seR, (6.26)
S
where [ > 0 is continuous.

Example 6.2.1. We assume that f(s) = s* — 5. Assumptions (6.22)-(6.26) are satisfied
in the following cases.

(1) Cahn-Hilliard-Oono equation (see [95], [111] and [131]). In that case,

g(x,s) = g(s) = Bs, B> 0.

This function was proposed in [111] in order to account for long-ranged (i.e., nonlocal)
interactions, but also to simplify numerical simulations.

(i1) Proliferation term. In that case,

8(x,5) = g(s) = Bs(s = 1), B> 0.

This function was proposed in [86] in view of biological applications and, more pre-
cisely, to model wound healing and tumor growth (in one space dimension) and the
clustering of brain tumor cells (in two space dimensions) ; see also [7] for other quadra-
tic functions.

(ii1) Fidelity term. In that case,

g(x, 8) = Apxap(X)(s — ¢(x)), g >0, DC Q, ¢ € L(Q),

where y denotes the indicator function. This function was proposed in [8] and [9] in
view of applications to image inpainting. Here, ¢ is a given (damaged) image and D is
the inpainting (i.e., damaged) region. Furthermore, the fidelity term g(x, u) is added in
order to keep the solution close to the image outside the inpainting region. The idea in
this model is to solve the equation up to steady state to obtain an inpainted (i.e., restored)
version u(x) of ¢(x).

Throughout the paper, the same letters ¢, ¢’ and ¢”” denote (generally positive) constants
which may vary from line to line. Similarly, the same letters Q and Q’ denote (positive)
monotone increasing and continuous (with respect to each argument) functions which
may vary from line to line.
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6.3 A priori estimates

We multiply (6.17) by (=A)~! ‘;—'; and integrate over Q and by parts. This gives

d 1 1 ou ~ ou
(A ulP + B [u] +2 f Fd) + 20 5R, = =g, (<87 20,

Q
where
. k—1
2 2
Bilul=) > allDul
i=1 |al=i

1
(note that B} [u] is not necessarily nonnegative). This yields, owing to (6.23) and (6.25),

d 1 1
E(||A,§u||2 + BZ[u] + 2f

Q

0
Fu) dx) + ||(,)—bt‘||31 <c f F(u)dx + ¢, (6.27)
Q
We can note that, owing to the interpolation inequality

Wl < COIV IV, (6.28)
ve H"(Q), ie{l,...m—1}, me N, m > 2,
there holds

1 1 1
|B; [u]| < EIIA,iull2 + clful.

This yields, employing (6.21),

LYQ)

IAZull? + B? [u] + 2f

1 1
F(u)dx > E||A,§u||2 + f Fu)dx + cllullt, . = ¢ |lull®> = ¢,
Q Q

whence

||A,%u||2 + Bé [u] + 2f Fu)dx > c(llulli]k@) + fF(u) dx)—c, c>0, (6.29)
Q Q

noting that, owing to Young’s inequality,

lul* < ellullj g, + cer Ve > 0. (6.30)

We then multiply (6.17) by (=A)~'u and have, owing to (6.20), (6.23), (6.24) and the
interpolation inequality (6.28),
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d
_||u||%1 + c(||u||?{k(g) + fF(u) dx) < |lull® + gf F(u)dx +c!, Ye > 0,
dt o o

hence, proceeding as above and employing, in particular, (6.21),

d
d—t||u||%1 + c(llullyy g, + f F(uydx) < ¢, ¢ > 0. (6.31)
Q

Summing ¢; times (6.27) and (6.31), where 6; > 0 is small enough, we obtain a
differential inequality of the form

dEl ou ,
— c(E, + ”E”El) <c,c>0, (6.32)

where

1 1
Ei = 6(IA]ull® + Bl [u] + ZIF(M) dx) + |lull?,
Q

satisfies, owing to (6.29),

Ey > c(lullfy g, + fg F(uydx)—¢', ¢ >0, (6.33)

Note indeed that
Ey < cllullfy g, +2 f F(u)dx
Q

< g+ [ Fwydn=c.c>0.¢20
Q

It follows from (6.32)-(6.33) and Gronwall’s lemma that

()l 0y < €™ UlttolZe gy + f Flup)dx) +¢", ¢ >0, 1 >0, (6.34)
Q

and

+r 61/! ,
[ 158 ds < el + [ Fdn)+ s ¢ > 0,120, r> 0 given,
¢ Q

(6.35)
Multiplying next (6.17) by Azu, we find, owing to (6.23) and the interpolation in-
equality (6.28),

d .1
EIIA,i ull® + CIIMIIf,Zk(Q) < c(lull® + IF @I + R@IP). (6.36)
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It follows from the continuity of f, F and h, the continuous embedding H*(Q) C(ﬁ)
(recall that k > 2) and (6.34) that

llull> + 1Lf @I + 1h@I < Ol (6.37)
< e " Olluollgr) + ¢, ¢ >0, t >0,
so that
d -1 ,
d—tllA]f ull? + cllulliﬂk(g) < e "Qlluollgr) + ¢, ¢, ¢ >0, t=0. (6.38)

Summing (6.32) and (6.38), we have a differential inequality of the form

dE Ou -’ 17 ’
d_t2 +c(Ey + ||M||12qzk(g) + ||E||%1) < e " Oluollpry) +¢”, ¢, ¢ >0,1>0, (6.39)

where
~1
E,=FE + ||A,§M||2
satisfies
Ey > c(lullfy g, + f Fu)dx)—c', ¢>0. (6.40)
Q

We now multiply (6.17) by %—Lt’ and obtain, noting that f is of class C?, so that
IAf@Il < Qllullzxq),
and proceeding as above,
d _% 2 _% Ou 2 —c't 7 ’
2 Aull”+ By fu]) + lI=1” < e Qlluolln) + ¢, ¢, ¢ >0, (6.41)
where

k-1
Bilul = > adivorulP.

i=1 |al=i

Summing finally (6.39) and (6.41), we find a differential inequality of the form

dE ou o . ,
d—: + C(Es + llullypu g + IIEIV) < e Qluollgr) +¢”s ¢, ¢ >0, 120,  (6.42)

where
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1 1
E; = E; + ||A ull* + B} [u]

satisfies, proceeding as above,
E; > C(||”||Hk+1(g) fF(u) dx)—c, ¢c>0. (6.43)
Q
In particular, it follows from (6.42)-(6.43) that

(Ol ey < € Qlluoll i) + ¢’ ¢ >0, £ = 0. (6.44)

We then rewrite (6.17) as an elliptic equation, for ¢ > 0 fixed,

A = —(—A)‘l% — Buu — f(u) — (-A)'g(x,u), Du=0o0nT, || <k—1. (6.45)

Multiplying (6.45) by Azu, we have, owing to (6.23) and the interpolation inequality
(6.28),

IAdl® < c(llull + ILf @I + 1) + || ||21) (6.46)

hence, proceeding as above (employing, in particular, (6.37)),

el 21y < (e Qlluollztce) + ||—|| D+’ >0 (6.47)

In a next step, we differentiate (6.17) with respect to time and obtain

0 Ou ou ou ag ou
(975 — AA; E - ABk(?_ - A(f'(u ) a(% M)E =0, (6.43)
ou
Z)“E =0onT, || <k (6.49)

We multiply (6.48) by (=A)~ 1 . and find, owing to (6.19), (6.26), the interpolation
inequality (6.28) and the contmuous embedding H*(Q) C L*(Q),

d

ou _
d_,”E” I II&IIHA(Q) (|| || + |l Cu )IIII—IIII( A) _”L""(Q))

s Ot ou
< + ||/ ,c>0,
i I+ Mallii=Z21,
which yields, employing the interpolation inequality
VI < elvll-alVlla g, v € Hy(Q), (6.50)
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and proceeding as above (note that / is continuous), the differential inequality

d Ou ou e ou .
Ellgllgl + C”E”i]k(g) < (e " Qluoll i) + 1)|IEII31, c, " >0. (6.51)

In particular, this yields, owing to (6.35) and employing the uniform Gronwall’s lemma
(see, e.g., [127]),

ou 1 ;o , )
IIE(I)IM < <0 Q (luollgr) + ¢'), ¢ >0, t>r, r> 0 given, (6.52)

r2

where the (continuous and monotone increasing) function Q is of the form Q(s) = csec’s.
In particular, it follows from (6.47) and (6.52) (for r = 1) that

oe()l| g2 () < Q(e_aQ’(HMOHHk(Q)) +c),¢c>0,t>1. (6.53)

Remark 6.3.1. If we assume that uy € H**'(Q) N Hy(Q), we deduce from (6.47), (6.51)
and Gronwall’s lemma an H**-estimate on u on [0, 1] which, combined with (6.53),
gives an H*-estimate on u, for all times. This is however not satisfactory, in particular,
in view of the study of attractors.

Remark 6.3.2. We assume that, for simplicity, g(x, s) = g(s) and we further assume that

fis of class C**" and g is of class C*™'. Multiplying (6.17) by A 3%, we have

1d
2dt

 Ou

Al

10 1 ~10 -1 ~
(Al + (Agu, Buw))) + |1A; a—ltlll2 = —((Ag f(w), A} a—l:)) - ((Afgwm), A

_1 1
which yields, noting that ||A; f(|I* + 1A g@II* < Qlull i1 ()) and owing to (6.44),

d
a‘,—t(lli‘\kull2 + ((Agtt, Baw))) < e Qllluoll+1 @) + ¢’y ¢ >0, £ 2 0. (6.54)

Combining (6.54) with (6.42), it follows from (6.43) and the interpolation inequality
(6.28) that

(D 2+ ) < QUluoll ), T € [0, 1],

so that, owing to (6.53),

lu@®llxey < Q™ Q' (luollrz) + ¢'), ¢ >0, t > 0. (6.55)
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6.4 The dissipative semigroup

We first give the definition of a weak solution to (6.12)-(6.14).

Definition 6.4.1. We assume that u, € L*(Q). A weak solution to (6.12)-(6.14) is a
function u such that, for any given 7 > 0,

u € C([0, T1; L*(Q)) N L*(0, T; Hy()),

u(0) = ug in L2(Q)

and

k
d%(((—m*u, W)+ Y al(D 1, DV + (@), )

i=1 la|=i
(D) g(x,u),v) = 0, Vv € Hy(),

in the sense of distributions.
We have the

Theorem 6.4.1. (i) We assume that u, € H'O‘(Q). Then, (6.12)-(6.14) possesses a unique
weak solution u such that, YT > 0,
u € L*(R*; Hy(Q)) N L*(0, T; H*(Q) N H{(Q))

and

% e L*(0,T; H'(Q)).

(ii) If we further assume that uy € H**'(Q) N Hg(Q), then, VT > 0,

u e L*(R*; H*'(Q) N HE(Q))

and

Ou

ot

(iii) If we further assume that f is of class C**1, g(x, s) = g(s), g is of class C*™' and
ug € H*(Q) N HY(Q), then

e L*(0,T; L*(Q)).

u € L (R*; H*(Q) N HL(Q)).
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Proof. The proofs of existence and regularity in (i), (i1) and (iii) follow from the a
priori estimates derived in the previous section and, e.g., a standard Galerkin scheme.
Indeed, we can note that, since the operators —A, Ay, Zk and A, are linear, selfadjoint and
strictly positive operators with compact inverse which commute, they have a spectral
basis formed of common eigenvectors. We then take this spectral basis as Galerkin basis,
so that all the a priori estimates derived in the previous section are justified within the
Galerkin scheme.

Let now u; and u, be two solutions to (6.12)-(6.13) with initial data ug; and u_,
respectively. We set u = u; — up and uy = up; — up, and have

ou

i AAju — ABu — A(f(ur) — f(u2)) + g(x, uy) — g(x, u2) = 0, (6.56)
D*u=0onT, |of <k, (6.57)
ult:() = Uy. (658)

Multiplying (6.56) by (=A)~'u, we obtain, owing to (6.19), (6.26), (6.34) and the
interpolation inequalities (6.28) and (6.50),

d
TP + el g, < QNP ¢ >0, (6.59)
where
0= Q(HuO,l”H"(Q)’ ||M0,2||Hk(g))'
Here, we have used the fact that, owing to (6.26) and (6.34),
llg(x, u1) — g(x, u)ll < Ol || ey el el
< Q(HMO,IHH"(Q)’ ||M0,2||Hk(g))||u||-

It follows from (6.59) and Gronwall’s lemma that

luI?, < e lluol?,, t >0, (6.60)

hence the uniqueness, as well as the continuous dependence with respect to the initial
data in the H~'-norm.
]

It follows from Theorem 6.4.1 that we can define the family of solving operators

S@: 0> D, up— u), t >0,
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where © = HS(Q). This family of solving operators forms a semigroup which is conti-
nuous with respect to the H™'-topology. Finally, it follows from (6.34) that we have
the

Theorem 6.4.2. The semigroup S (t) is dissipative in ®©, in the sense that it possesses
a bounded absorbing set By C © (i.e., YB C © bounded, Ity = to(B) > 0 such that
t>ty = S()B C By).

Remark 6.4.1. (i) Actually, it follows from (6.53) that we have a bounded absorbing
set By which is compact in ® and bounded in H**(Q). This yields the existence of the
global attractor A which is compact in ® and bounded in H*(Q).

(ii) We recall that the global attractor A is the smallest (for the inclusion) compact set
of the phase space which is invariant by the flow (i.e., S (1) A = A, Yt > 0) and attracts
all bounded sets of initial data as time goes to infinity; it thus appears as a suitable
object in view of the study of the asymptotic behavior of the system. We refer the reader
to, e.g., [103] and [127] for more details and discussions on this.

(iii) We can also prove, based on standard arguments (see, e.g., [103] and [127]) that
A has finite dimension, in the sense of covering dimensions such as the Hausdorff and
the fractal dimensions. The finite-dimensionality means, very roughly speaking, that,
even though the initial phase space has infinite dimension, the reduced dynamics can be
described by a finite number of parameters (we refer the interested reader to, e.g., [103]
and [127] for discussions on this subject).

Remark 6.4.2. In the numerical simulations given in the next section below, the equa-
tions will be endowed with periodic boundary conditions. From a mathematical point
of view, these boundary conditions are much more delicate to handle, since we have to
estimate the spatial average of the order parameter (u) = m fQ udx (see [27], [36]
and [47]). When g = 0, this is straightforward, since we have the conservation of mass,
namely,

(u(t)) = {up), ¥t > 0.

However, when g does not vanish, we are not able to estimate this quantity in general.

6.5 Numerical simulations

We give in this section several numerical simulations in order to illustrate the effects
of the higher-order terms on the anisotropy. The computations presented below are per-
formed with the software FreeFem++, for k = 2. We also take Q bi-dimensional and
rectangular. Finally, the system is associated with periodic boundary conditions.

The problem can be written as, for k = 2,
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6.5. Numerical simulations

0 1
—u+Aw+—g(x,u)=0
£

ot

w+ azoa‘@ + a02884u + ansﬂ - alosaz—u - amsi + f(u)
ox* oy* 0x20y? 0x?

u, w are £ — periodic,

u(0, x,y) = uo(x,y),

where € > 0 is introduced to take into account the diffuse interface thickness. Setting

*u Pu Fu 18°p . 10%q
a2 P a? 7 Ax20y2  29y*  20x%

then, integrating by parts, the system which needs to be solved reads

Find (u, w, p,q) € H! _(Q)* such that

per

0 1
((—6”, V1)) = (Yw, Vo)) + =((g(x, u), v1)) = 0
t £

ov dg O
(O, v2)) = ae((5 op 2)) ane(( 6‘] a"z

- M((‘(”’ aV2)> - 2L 0y

)

—ajpe((p,v2)) — ane((q, v2)) + ;((f(bl), v2)) =0,

ou 0v3

(p.va) + (2 50 =0,

ou 8\/4

((q,v4)) + (( )) =0,

where the test functions vy, v, v3, v4 all belong in H__ (Q).

The mesh is obtained by dividing Q into 149 rectangles, each rectangle being divi-
ded along the same diagonal into two triangles. The computations in Fig. 6.2, 6.3, 6.4
are based on a P, finite element method for the space discretization, while we used a P,
finite element method for Fig. 6.5, 6.6, 6.7. The time discretization uses a semi-implicit
Euler scheme (implicit for the linear terms and explicit for the nonlinear ones).

We give numerical results concerning a higher-order Cahn-Hilliard-Oono equation
(Fig. 6.2), a higher order phase-field crystal equation (Fig. 6.3, 6.4) and a higher-order
Cahn-Hilliard equation with a mass source for tumor growth(Fig. 6.5, 6.6, 6.7).

per(
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(1) Cahn-Hilliard-Oono equation (See Fig. 6.2)

Q=1[0,1]x[0,1], coeflicients g;; in Table 6.1,
f(u) = w—u, g(x,u) = 0.5u,

u(()l) randomly distributed between -1 and 1, &€ =1, step size At = 5.1078,

(i1) Phase field crystal equation. (See Fig. 6.3)

Coeflicients a;; in Table 6.2, At =107%,
f(w) = w + (1 =0.025)u, gx,u) =2u, e=1,
ul” randomly distributed between -0.2 and 0.3, Q = [~10, 10] x [-10, 10].

(ii1) Phase-field crystal equation. (See Fig. 6.4)

Coeflicients g;; in Table 6.3, At = 1073,
f(u) = w’ + (1 —0.025)u, gx,u) =2u, e=1,

In(x—12) . 2x(y—1 +10 +3
ug) =0.07 = 0.02 cos 7r(x32 ) sin ﬂ%z ) +0.02 cos? n(x32 )cosz ﬂ(y32 )
4 An(y — 6
~0.01 sin® 3”; sin’ ”%2 ) =10.32]%[0.32].

(iv) Tumor proliferation term. (See Fig. 6.5, 6.6, 6.7)

Coeflicients g;; in Table 6.4, 6.5, 6.6
fwy=u’-u, Q=[-0.7,1,71x[-1.7,0.7], Ar=107°
g(x,u) = 46(u + 1) — 280(u — 1)*(u + 1)*, & = 0.0125,

1

ut? = — tanh (E (V2(x =057 +025(y +0.5) - 0.1)) e[-1,1].

3)

The initial conditions ;" and u?) are shown in Fig. 9.9.
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m110524

4)
0

(a) Phase-field crystal : uff ) (b) Tumor growth : u

“
0

FiGure 6.1 — Initial conditions u(()3) and u

() t=5x%10" ) t=5x%10" (2) t=5x%107 (h) t=5x10"°

FiGure 6.2 — Initial condition uf)l), f=u’-u, g=0.5u, =005 At =5x 1073,

TasLE 6.1 — Coeflicients a;; for Fig. 6.2

column ar a (7)) alo aopl Remark
1 0 0 0 1 1 Cahn-Hilliard-Oono
2 le-2 | le-4 | 1le-4 | le-4 | le-4 x-direction
3 le-4 | 1e-2 | 1le-4 | le-4 | le-4 cross-direction
4 le-4 | le-4 | 1le-2 | le-4 | le-4 y-direction
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(@) t=25x10"2 (b) t=2.5x 1072 ) 1=25%10"2 (d) t=25x 1072

(i) t=7.5%1072 () t=75x%10"2 (k) t=7.5x% 1072 () t=75x% 1072

(m) ¢t = 107" (n) t=10" (0) t=107"

FiGure 6.3 — Initial condition u’, f = u’ +(1-0.025)u,g = 2u, = 1, At= 107,

TasLE 6.2 — Coeflicients a;; for Fig. 6.3

Column drx | Air1 | Aoz | A1o | Aol Remark
1 1 1 1 | -2 | -2 | Phase-field crystal
2 0101 -2 1] -2 x-direction
3 011 (01] -2/ -2 cross-direction
4 01701} 1 |-21]-2 y-direction
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6.5. Numerical simulations

(d) r=3x1072

() t=6x1072

k) t=6x10"2 1) t=6x10"2

Ficure 6.4 — Initial condition uff), f=u?+(1-0.025u, g=2u, =1, At =1073.

TabLE 6.3 — Coeflicients a;; for Fig.6.4

Row dy | Ay | Aoz | Ao | Aol Remark
1 1 105|105 -2 | -2 x-direction
2 05| 1 [|05]| -2 | -2 | cross-direction
3 (05705 1 | -2 -2 y-direction
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(@) t=15x1072 (b) t=15%x1072

(c) t=25%1072 (d) r=25x%x10"72
FiGuRE 6.5 — Initial condition u)", f = u® —u, g = 46(u + 1) — 280(u — 1)>(u + 1), & =
0.0125, At = 107°.
TasLE 6.4 — Coeflicients a;; for Fig. 6.5

Column ar a aopn aio | Aol Remark
1 0 0 0 1 1 | Cahn-Hilliard
2 Se-5 | 5e-5 | 5e-5| 1 1 isotropy

3

(@ t=15x1072

() t=15%x1072

uuuuuuuu

(d) t=25x102 (e) 1=25%1072 ) t=25x%10"2

FicuRe 6.6 - Initial condition u\’, k = 2, f = Ww-u g =
46(u + 1) — 280(u — 1)2(u + 1)%, & = 0.0125, Ar = 10°°.
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TasLE 6.5 — Coeflicients a;; for Fig. 6.6

Column an an Qoo ay | do Remark
1 1.8e-5 | 5e-6 S5e-6 1 1 X -direction
2 S5e-6 | 1.8e-5 | 5e-6 1 1 | cross-direction
3 S5e-6 S5e-6 | 1.8e-5| 1 1 y-direction

- X
(@) t=4x1073 (b) t=4x1073 () t=4x1073
T

) t=2x1072 (e) t=2x 1072 () t=2x 102

FiGURE 6.7 — Initial condition u)”, f = u® — u, g = 46(u + 1) — 280(u — 1)*(u + 1)?, & =
0.0125, At = 1075,

TasLE 6.6 — Coeflicients a;; for Fig. 6.7
Column A an aon dio | Aol Remark
1 Se-4 | 5e-6 | 5e-6 | 1 1 x-direction
2 5e-6 | 5e-4 | 5e-6 | 1 1 | cross-direction
3 Se-6 | 5e-6 | Se-4 | 1 1 y-direction
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Chapitre 7

Well-posedness for modified
higher-order anisotropic Cahn-Hilliard
equations

Caractere bien posé pour des généralisations

anisotropes et d’ordre élevé de I’équation de
Cahn-Hilliard

Ce chapitre est constitué de 1’article Well-posedness for modified higher-order aniso-
tropic Cahn-Hilliard equations, Asymptotic Analysis, a paraitre.
Cet article est écrit en collaboration avec Hongyi Zhu.
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Abstract : Our aim in this paper is to study a modified higher-order (in space)
phase field crystal model endowed with anisotropy. In particular, we deduce a priori
estimates to obtain the dissipative semigroup which leads to well-posedness results.

Key words and phrases : modified phase field crystal equation, higher-order mo-
dels, anisotropy, a priori estimates, dissipative semigroup.

7.1 Introduction

We study in this paper the modified higher-order anisotropic Cahn-Hilliard equa-
tions which read, fork e N, k > 2, x€e Q c R? (d = 1,2,3),

k
Bt + O — A Z(—l)" Z a4 D*u — Af(u) = 0, (7.1)

i=1 |or|=i

where ( is assumed to be a bounded and regular domain occupied by the system with
boundary I'; u is the order parameter, for instance, the density of atoms ; f is the deri-
vative of a double-well potential F, and S > 0 is a relaxation time. The Cahn-Hilliard
equation ([19, 20]), which describes important features of binary alloys in phase sepa-
ration processes, such as spinodal decomposition and coarsening,
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0

M Nu—Af) =0, (7.2)
ot

is considered as an H™!-gradient flow of the so-called Ginzburg-Landau (see [68, 69])

free energy,

Yo = f (%wuﬁ + F(u)) dx. (7.3)
Q

In (7.3), the term |Vu|* models short-ranged interactions. It is however interesting to note
that such a term is obtained by truncation of higher-order ones (see [20]); it can also
be seen as a first-order approximation of a nonlocal term accounting for long-ranged
interactions (see [65] and [66]).

Concerning the inertial term (namely, the hyperbolic term : 89,.u), in fact, a hyperbo-
lic relaxation of the one-dimensional Cahn-Hilliard equation has been proposed in [50],
in order to model rapid spinodal decompositions in a binary alloy. Furthermore, S. Gatti
et al. provided in [62] a detailed analysis of the longterm properties of the solutions for
a hyperbolic relaxation of the one-dimensional Cahn-Hilliard equation in the singular
limit when the relaxation parameter goes to zero.

We notice that, when k = 1, without consideration of anisotropy, the equation be-
comes

Byt + A — A[A*u + 2Au + f(u)] = 0, (7.4)

which is a so-called modified phase field crystal equation (abbr., MPFC) and was propo-
sed in [123] by P. Stefanovic et al. (see also in [124]). The MPFC equation incorporates
both fast elastic relaxation and slower mass diffusion which has achieved to distinguish
between the elastic relaxation and diffusion time scales. In [75] and [76], M. Grasselli
and H. Wu proved the well-posedness and established the existence of an exponential
attractor for the MPFC equation (7.4) endowed with periodic boundary conditions. Ad-
ditionally, in [72], M. Grasselli and M. Pierre proposed a space semi-discrete and a fully
discrete finite element scheme for the MPFC model and established their convergence
to equilibrium both theoretically and numerically. We refer the readers to [135, 136] for
more numerical methods to solve the MPFC model and [45, 50, 56, 79] for the theore-
tical and numerical study on the phase field model without a relaxation.

We further studied (7.1) in [140], in which we assumed the well-posedness of so-
lutions, the numerical approximations for a hyperbolic relaxation of the higher-order
anisotropic generalized Cahn-Hilliard models which was inspired by the work of M.
Grasselli and M. Pierre in [72], employing the finite element and spectral methods. In
this article, we will focus on the well-posedness of the hyperbolic equations and their
solutions, more precisely, the existence, uniqueness and regularity.
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7.1. Introduction

Considering the anisotropic phenomenon, recently, G. Caginalp and E. Esenturk
proposed in [23] (see also [22]) higher-order phase-field models in order to account for
anisotropic interfaces (see also [40, 80, 119, 125, 128] and [132] for other approaches
which, however, do not provide an explicit way to compute the anisotropy). More pre-
cisely, these authors proposed the following modified free energy, in which we omit the
temperature :

1 k
y = f (= a ) D%l> + F(u)dx, k € N, (7.5)
o= [(3223

i=1 jal=i
where, for @ = (ky, ka2, k3) € (N U {0})3,

|a|:k1+k2+k3

and, for @ # (0,0, 0),

ol

= kiAo ks
0x,'0x, 6x3

(02

(we agree that D00y = y),
The corresponding higher-order anisotropic Cahn-Hilliard equation (it also corres-
ponds to the case when 8 = 0 in equation (7.1)) then reads

Ou : i 20
E—A;(—l) éaaﬂ u—Af(u) = 0. (7.6)
We studied in [32] the corresponding higher-order isotropic models, namely,
ou
i AP(-Au — Af(u) = 0, (7.7)

where

k
P(s) = Zaisi, a,>0,k>1, seR.
i=1

We also refer the readers to [84, 85, 95, 96, 97] (see also [117, 118]) the study on higher-
order Cahn-Hilliard type equations.The anisotropic model (7.6) was analysed in [34],
and the generalized anisotropic model which contains a continuous function g(x, u) was
studied in [35], in both of which, numerical simulations were performed to illustrate the
anisotropic effects.

Taking the nonlinearity into account, the authors in [33] have considered (7.7) (see
also in [30, 36, 41, 70, 96, 99, 104] for other equations) endowed with a thermodynami-
cally relevant potential F' which is associated to the mean-field model :
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_% 2 Q B 1-5 1+s
F(s) = 2(1 s)+2((1 s) In( 5 )+ (1 + s)In( > )), (78)
se(-1,1), 0<6<8,,
i.e.,
6. 1+s
f(8)=—bs+5In—, (7.9)

where 6 and 6. are proportional to the absolute temperature and a critical temperature,
respectively. However, in this paper (and also in [72, 75, 76] and [140], etc.), we consider
a polynomial type nonlinearity, for example,

F(s) = %(sz - 1)%, (7.10)

i.e.,

f(s)=F'(s)=s" —5. (7.11)

Our interests in this paper is to study the well-posedness of a hyperbolic relaxation
of the higher-order anisotropic Cahn-Hilliard equation. In Section 2, detailed notations
on operators, spaces and parameters are provided, then in Section 3, the exact problem
is addressed and after which, in Section 4, a priori estimates are derived in detail. In
Section 5, the existence and uniqueness of weak solution are given and proved, as well
as the dissipativity of semigroup.

7.2 Prelimilaries

For a real Banach space X, we set || - |[xy as the norm of X and (-,-) as the dua-
lity product between X and the topological dual of X. Generally, || - || denotes the
L*>-norm and || - ||-; = ||(—A)% - ||, where (—=A)~! denotes the inverse minus Laplace

operator associated with Dirichlet boundary conditions. Moreover, for v,w € HY(Q),
((v,w))_ = (((—A)‘%v, (—A)‘%w)), where ((-, -)) denotes the usual L?—scalar product.

Assuming that k > 2 (k € N), and a, > O (la| = k), we define the elliptic operator A
as

A, Wiy = ), @DV, DW), v,w € Hi(€), (7.12)
lal=k

where H™*(Q) is the topological dual of H}(€). For arbitrary functions v, w € HE(Q),
we note that
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v, w) > Y au(D", D*w)

lor|=k

is bilinear, symmetric, continuous and coercive, so that

Ap t HY(Q) > H Q) (7.13)

is well defined. It then follows from the elliptic regularity results for linear elliptic ope-
rators of order 2k (see [1], [2] and [3]) that A, is a strictly positive, selfadjoint and un-
bounded linear operator with compact inverse, with domain D(A;) = H*(Q) N H{(Q),
where, for v € D(Ay),

A = (=1 Z a,D*.

lel=k

1 1
We further note that D(A?) = H5(Q) and, for (v,w) € D(A})?,

(AvATw) = D 4, (D, D w).

|or|=k

1
We then note that (see, e.g., [127]) [|A¢ - || (resp., [|A{ - |) is equivalent to the usual

1
H*—norm (resp., H*~norm) on D(Ay) (resp., D(A})).
Similarly, we can define the linear operator A, = —AA;,

Ay HYMNQ) = HH(Q)

which is a strictly positive, selfadjoint and unbounded linear operator with compact
inverse, with domain D(A;) = H***(Q) N Hy'(Q), where, for v € D(Ay),

Aw = (=1)1A Y @, 0.

la|l=k

Additionally, D(Ak% ) = H*1(Q) and, for (v, w) € D( Ak%)z,

(A Aiw) = > a (YD, VD w)).

o=k

_ 1
Besides, ||A - || (resp., [IA? -||) is equivalent to the usual H**?—norm (resp., H**' —norm)

_ _1
on D(Ay) (resp., D(A})).
We finally define the linear operator Ay = (-N7A,,

Ay HEN(Q) - H (@),
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as —A and A; commute, we can note that (—A)~' and A, commute, so that A, = A(—A)~".
Furthermore, according to [34], A, is strictly positive, selfadjoint and unbounded linear
operator with compact inverse, with domain D(A;) = H*2(Q) n H*(Q), where, for
Ve D(Ak)7

Aw = (=1)F Z a, D™ (=A) .
lal=k

Furthermore, D( 2) = H'(Q) and, for (v,w) € D( Af 2,
~L ~1 1 i
(A v Aw) = > au(DF(~A) 2y, D(-A) ).
lal=k

~ ~1
Besides, ||A - || (resp., [|A} -||) is equivalent to the usual H*~2—norm (resp., H*"' —norm)

on D(Ay) (resp., D(Ak% ).

In what follows, the same letters ¢, ¢’, ¢”” denote (generally positive) constants which
may vary from line to line. Similarly, the same letter Q denotes (positive) monotone in-
creasing and continuous function which may vary from line to line. Furthermore, the
boundary conditions are Dirichlet boundary condition for a sufficiently regular boun-
dary.

7.3 Setting of the problem

We consider the following modified higher-order anisotropic phase field crystal
equation, fork € N, k > 2, x € Q C R4, t € (0, +00),

k
P +u =AY (=1 " a,D*u = Af(u) =0, (7.14)

i=1 |ev|=i

Uli=o = uo(x),  Usli=o = vo(x), 1 20, x € Q, (7.15)
where the nonlinearity f(s) is the derivative of a double-well potential F. We consider
F(s) in this article as an approximation to the thermodynamically relevant potential F
which is a logarithmic function (see [20, 36]). Typically,

f(s5)=F'(s) =5 —5. (7.16)
More generally, we assume that

f€C(R), f(0)=0, (7.17)
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[ = =co, co 20, (7.18)
f(s)s > c1F(s)—c; > —c3,¢c1 >0, ¢, 320, s €R, (7.19)
F(s)>cus* =5, ¢4>0, ¢5>0, se€R, (7.20)

It can be verified that f defined by (7.16) satisfies all the assumptions from (7.17) to
(7.20).

7.4 A priori dissipative estimates

We rewrite problem (7.14) as

Buy, + u, — A(Agu + Beu + f(u)) =0, (7.21)
where
k—1
B = Z(—U" Z a,D*u. (7.22)
i=1 la|=i

Then we have

Lemma 7.4.1. Suppose (u, u,) is a regular solution to problem (7.14)-(7.15). Then the
following dissipative estimate holds

!
2 2 —(t-s 2 - .
lulle ) + NllZ, +f e Nu ()2 ds < e Qlluollqys Voll-) + €5 (7.23)
0

Moreover; if we further assume that f is of class C**!, the following dissipative estimate

holds

2 2 -’
a2y + 1Bty < €€ QCUltollscs IVollicr ) + €. (7.24)

Proof. Multiplying (7.21) by (—=A)~'u,, and integrating over Q, we obtain

1d 1 1
3% Blludl 2y + AL ull® + B [u] +2fF(u)dx) + w2, =0, (7.25)
Q
where
| k-1
B:[u] := ol D ull*. (7.26)

i=1 |a|=i
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We can note that, owing to the interpolation inequality

. L -4
Vllzi) < OV g lIVIF ™,

(7.27)
ve H"(Q), ief{l,--- ,m—-1}, me N, m > 2,
there holds
1 1 1
1B Lull < S llA, ull® + cllull®. (7.28)
Multiplying (7.21) by (—=A)~'u, we obtain

d 1 1 1
7 (ﬁ((uz, u))-1 + §||u||%l) = Blludll®, + Az ull® + B2 [u] + (f(w), u)) = 0. (7.29)

> 28

Multiplying (7.29) by a sufficiently small coefficient n (in fact, normally, we take n €
(0, £)), then summing the resulting equation and (7.25), we get the following differen-
tial inequality

d
d—t&(t) +x1(0) =0, (7.30)
where

1 1 1
E1(0) = nB((up, )1 + Ey(u) + Eﬁlluzllgl + Enllullgl,

xi(® = (1= mBllul?, +7 (||A£u||2 + B [u] + (f(u), u))),

(7.31)
Ei(u) = A ulP® + B} [u] +2 f F(udx,
Q
and E; satisfies, owing to (7.20), (7.28) and the Young inequality
C ’
ellulf® < =l + ¢ (7.32)
E\ > c(llullzk(g) + f F(u)dx) -, c>0. (7.33)
Q
It follows from the Cauchy-Schwarz inequality that
B, 0)11 < Sl + Bl (7.34)

We also note that, according to an embedding theorem,

2 2
< elluliZg

(7.35)
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Thus, for 7 € (0, 5;) small enough, we have

1
> 28
1
Q (lrll-1, E1(w)) 2 E:1(1) 2 S E1(1) + g”utllzl + (g — Bl (7.36)

where, Q(w, z) is a positive monotone increasing function with respect to w and z. Fur-
thermore, owing to the assumption (7.19), it is obvious that

((f(w),u) > cf F(u)dx — ¢'|Q), (7.37)

Q
with which, according to the definition of &,(¢) and y(¢), for a sufficient small coeffi-
cient ¢ > 0, we can obtain

1
—x1(t) = c&1(t) + |lugl*, — ¢”. (7.38)
2

As a result, combining the above inequalities (7.30) - (7.38), we can rewrite (7.30)
as

d
—Ei(0) + (&) +llul?)) < ¢, (7.39)

where ¢ depends on 17 and &, satisfies

& = c(||u||§,k(g) + [leagly + f F(u)dx) —c, c>0, (7.40)
Q

where ¢ depends on 5. We note that, with the continuity of F and the interpolation
inequality, we have | f F(uwdx| < O(||ul|p#(cy)). Combining (7.39) and (7.40), and Gron-

Q
wall’s lemma, we obtain, for ¢’ > 0, ¢ > 0,

ludi?, + IIM(t)Ilik(Q) < ce™ " Qlluollxs Ivoll-1) + ¢, (7.41)
and
" (9u 2 —c't ” .
IIEII_ldS < ce” " Qluoll gy, lIvoll-1) + ¢, r > 0 given. (7.42)
t

In addition, applying again Gronwall’s lemma on (7.39), we obtain, for ¢’ > 0, t > 0,

f
&) + f e N ()|, ds < E1(0)e™" + 7, (7.43)
0

more precisely, with the definition of &;(¢), there holds that

f
2 2 -/ (t— 2 -’
Nl oy + ) + | e Nu(s)I12 ds < e Qlluoll s IIvoll-1) + ¢
HY(Q) 0
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We then multiply (7.21) by u, and integrate over Q. It gives :

1 d _1 _1
3 dr (ﬁlluzll2 +||AZull® + B} [u]) + P < IAL@ONudl,
with
_1 k=1 o
Bilul= Y > alVD"ul’ and 1B [ull < cllull.
i=1 |a|=i

Noting that f is of class C?, so that for k > 2,

IAf @)l < Olull g () (7.44)
we get from (7.41) that, for ¢’ > 0,

d _1 —1 Y 7
7 (,3||Mr||2 +|AZul® + B} [M]) + > < € Qluoll ey lIVoll-1) + ¢ (7.45)

We then test (7.21) by u, and integrate over €2, owing to (7.41) and (7.44), applying
Cauchy-Schwarz inequality, to get

d | B 5 .
DBy, ) + Sl - Alul + B
7 (ﬁ((uz u)) + 2||M|| ) Blludl|” + 1A ull” + B [u] (7.46)
< e " Olluoll g+ IIvoll-1) + ¢ + llull*.

Multiplying (7.46) by a sufficient small positive coefficient " € (0, ﬁ), and summing
the resulting inequality with (7.39) and (7.45), it leads to

d ,
E%(t) + D(1) < € Qlluollx@y Voll-1) + ¢ + [lul?

< e " Olluollgr(y, Ivoll-1) + ¢”,

(7.47)

where

i L 7

Y1) = & + Sl + SIAL WP + 5 B L] + ' BlCas ) + Ll o
_1 1

Di(t) = /A ulP + 1 Bl Tul + (1~ Blluwll + c&: + cllu,.

Proceeding as above, according to (7.20), the interpolation and Young inequalities
(7.27) and (7.32), it follows that,

1 -
Oletgll, Nlll g1 (@) = () = f{nutnz + ZIIA}(/ZMIIZ -c, (7.49)
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with which, therefore, we can deduce from the expressions of Y and D, that there
holds

d / ”
zt%(l) +coY1(1) < ce™ " Qlluollpxq)» IIvoll-1) +¢”. (7.50)

Owing to Gronwall’s lemma and (7.49), we thus obtain

t
Yi(1) < Y1(0)e™ + f e (ce™* Qlluollzrcays Ivoll-1) + ) ds
0

(7.51)
< e~ " Qlluollgr+1 s lIvoll) + ¢”,
so that
2 2 —¢
" + Neal [y ) < € TOluollgr+1 s lIvoll) + €. (7.52)

Multiplying then (7.21) by A.u, and integrating over Q, owing to the interpolation
inequality (7.27), we have

d . 1 1 .1 1
E (ﬁ((A,i u, A u)) + EIIA,i u||2) — BIAZ wll* + JAwull® + ((Bu, Agu)) < |((f(w), Agua))l.

It then follows from the continuity of f and F, and the continuous embedding H* c
C(Q) for k > 2, and (7.41), that

d 1 1 1 .1 1
7 (,3((14,3 u, A u)) + EIIA,i ullz) + cllAgull® = BIA ul* + ((Beut, Agt))
t (7.53)

< e " Olluollxcys IIvoll-1) + ¢”.

Multiplying (7.21) by Agu,, integrating over Q and by parts, and noting that the two
operators A; and B; commute, we obtain

1d 1 n N N
3 (,3||A,f wil* + 1A ull® + ((Bku,Aku))) +IAZwll® < (A2 f(u), Az u). (7.54)

1
We further assume that f is of class C**!, which yields [|A? f(w)I* < OQlullge+1 ().
Owing to (7.52) and Cauchy-Schwarz inequality, there holds that

1d ~1 1 .1
2 (ﬂllA,i wll® + | Awull® + ((Bku,Aku))) + EIIA,f wll* (7.55)

< " Qlluoll w10, IIvoll) + .
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Multiplying (7.53) by n”” € (0, 5;) and summing the resulting inequality with (7.39)

L
’2[3

and (7.55), we get
d -t 77 ’
EJ/z(t) + Di(1) < ce” " Ouol| g1 lIvoll) + ¢, ¢, ¢ >0, >0, (7.56)
where
Vo K3 K3 N’ s Bt
Yo(t) =& + n"B(A u, AL u)) + jllAk ull” + EIIA,{ |
1 1
+ EHAku”Z + 5((Bku, Aiu)), (7.57)

1 77 w3 77 77
Do(t) =(5 = n"BlIA; wll? + el Audl® + " (Be, Agw)).
Applying Cauchy-Schwarz, (7.27) and proceeding as above, it follows that,
1
|((Beu, Agu))| < Z”Akullz + Cllul.

Then, arguing as previously with (7.20) and (7.32) and for " small enough, we
have :

1 1
Ollugl |1 (s llull px ) = Ya(t) 2 gllAi wl® + Z”Akullz -, (7.58)

with which, we can deduce from the definition of Y,(¢) and D,(¢) that there holds

d .
d—tyz(f) + coYa(t) < ce”” IQ(HMOHH"“(Q)’ voll) + ¢, ¢, ¢ >0, t>0. (7.59)

According to Gronwall’s lemma, the interpolation inequality and (7.52), we finally ob-
tain (7.24), then the proof is complete. O

7.5 The dissipative semigroup

Based on the a priori estimates, we have the

Theorem 7.5.1. (i) For any initial data (uy, vo) € Hy(Q)xH™'(Q), problem (7.14)-(7.15)
possesses a unique weak solution (u, u,), such that, forV-T > 0, u satisfies

u € L°(R*; H{(Q)) and u, € L*(0,T; H'(Q)).
(ii) If we assume that (u, vo) € (H*'(Q) N HS(Q)) X L*(Q), then we have,

u € L¥(R*; H*'(Q) N HY(Q)) and u, € L*(0, T; L*(Q)).
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(iii) If we further assume that f is of class C**', and (uy, vo) € (H*(Q) N HS(Q)) X
HY(Q), then

u € (L™(R*; H*(Q) N Hy(Q)) and u, € L(0, T; H'(Q)).

Proof. We can prove the existence and the regularities in (i), (ii), (iii) by applying, for
instance, a standard Galerkin scheme and the a priori estimates which have been proved
in the previous section.

Now we assume that there are at least two pairs of solutions to the problem (7.14)-
(7.15), (u1,v1) and (ua,v,) (where v; = %, Jj = 1,2), respectively associated to the
initial data (l/lo’] , VO,]) and (Mo,z, Vo’z). Then we set u = Uy — Uz, V=V1—Vy, Ug = Up1 — Up2
and Vo = Vo,1 — Vo2 to have

Buy + u — AAgu — AByu — A(f(ur) — f(up)) = 0, (7.60)
Du=0, onT, |a| <k, (7.61)
Ml,:() = Uy, V|t:0 =1. (762)

Multiplying (7.60) by (—=A)~'u, and integrating over Q and by parts, we obtain, adding
to both parts of the resulting equation the term %%IIMHZ,
1d 2 12 2 | pi 2 2
2 (Bllutll_l + |4 ull” + B [u] + yllull ) + lloal[Z,
< @ur) = fua), u))l + yI((u, up))l.

Considering the right-hand side, we note that f is of class C?, then we have

(7.63)

V(f(uy) = f(w)) = f'(u1)Vuy = f'(u2)Vu,
= (f'(u) = f'(u2))Vuy + f'(u)Vu
= (€., )uVuy + f'(u2)Vu.

Noting that " (e, 4,), f'(u2) € L*(Q) and u, Vu, € L4(Q), then

I((f (ur) = f(u), u)l + yI(u, u))l < V@) = f@)lllel|-1 + [V ulllleeel-o
= Q(||M0,1||H§(g), ”uO,ZHH(’;(Q)a Vo, 1llz-1@)s
”VO,Zl|H*1(Q))(”u”L4(Q) + ”u“Hl(Q))”ut”—l

< cllull gyl 1 -

Using (7.28) and choosing vy large enough, we deduce that
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1
& := Bllu?, + 1A, *ull® + B [u] + yf uldx
Q

1
2 172112 2 2
>Bllul”y + EIIA,C/ ull” = BlludlZ; + cllullzu.

Thus, owing to interpolation inequality and Cauchy-Schwarz inequality, we have

d :
58+l < il g < ¢ &. (7.64)
Applying the Gronwall’s lemma, we get
et 2y + Nl < ce Uluollz + voll2)), (7.65)

which yields that the solutions are continuously dependent on the initial condition, as
well the uniqueness.
O
Thus, we can define the family of solving operators :

S(@) 1 © = D, (uo,vo) = (u(r), u(1), ¥Vt 2 0,

where ® = HS(Q) x H™'(€), and u is the solution given by Theorem 7.5.1. This family
of solving operators indeed forms a continuous semigroup for the topology of H’S(Q) X
H1(Q) (Vt > 0). It thus follows from (7.23) and (7.41) (see [103] and [127]) that

Theorem 7.5.2. The semigroup S (t) is dissipative in @, in the sense that S (t) possesses
a bounded absorbing set B, which is bounded in ®.

Remark 7.5.1. (i) Thus, we can proceed as in [75] and have the existence of the global
attractor A which is compact in ©.

(ii) If we further assume that f is of class C**' and the initial data (uo,vy) €
(H*(Q) N HE(Q)) x H1(Q), it follows from (7.24) that the semigroup S (1) is dissi-
pative in (H*(Q) N H{(Q)) x H1(Q).

140



Chapitre 8

Energy stable finite element/spectral
method for modified higher-order
generalized Cahn-Hilliard equations

Méthode éléments finis / spectrale stable en
énergie pour des généralisations d’ordre élevé
de ’équation de Cahn-Hilliard

Ce chapitre est constitué de I’article Energy stable finite element/spectral method for
modified higher-order generalized Cahn-Hilliard equations, J. Math. Study, Volume
51(3)(2018), 253-293.

Cet article est écrit en collaboration avec Hongyi Zhu, Laurence Cherfils, Alain Mi-
ranville et Wen Zhang.

141






J. Math.Study
Volume 51(3)(2018), 253-293
DOI : 10.4208/jms.v51n3.18.02

Energy stable finite element/spectral method for
modified higher-order generalized Cahn-Hilliard
equations

Hongy1 Zuu®

Xiamen University, School of Mathematical Sciences
Fujian Provincial Key Laboratory of Mathematical Modeling and High Performance Scientific Computing
Xiamen, Fujian, China
LAURENCE CHERFILS
Université de La Rochelle
Laboratoire des Sciences de I'Ingénieur pour 1’Environnement

UMR CNRS 7356
Avenue Michel Crépeau, F-17042 La Rochelle Cedex, France

ALAIN MIRANVILLE AND SHUIRAN PENG

Université de Poitiers
Laboratoire de Mathématiques et Applications, UMR CNRS 7348
Boulevard Marie et Pierre Curie - Téléport 2
F-86962 Chasseneuil Futuroscope Cedex, France

WEN ZHANG

East China University of Technology, School of Sciences
No. 418, Guanglan Road, Changbei
Nanchang City, Jiangxi Province, China

Received December 1, 2017 ; Accepted April 28, 2018

Abstract : Our aim in this paper is to study a fully discrete scheme for modi-
fied higher-order (in space) anisotropic generalized Cahn-Hilliard models which have
extensive applications in biology, image processing, etc. In particular, the scheme is a
combination of finite element or spectral method in space and a second-order stable
scheme in time. We obtain energy stability results, as well as the existence and unique-
ness of the numerical solution, both for the space semi-discrete and fully discrete cases.
We also give several numerical simulations which illustrate the theoretical results and,
especially, the effects of the higher-order terms on the anisotropy.

Key words and phrases : modified Cahn-Hilliard equation, higher-order models,
energy stability, anisotropy, numerical simulations.
AMS Mathematics Subject Classification : 35K55, 35J60.
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8.1 Introduction

The Cahn-Hilliard equation,

du
ot

plays an essential role in materials science and describes important qualitative features
of two-phase systems related with phase separation processes, assuming isotropy and a
constant temperature (see, e.g., [19], [20], [36], [100] and [108]).

Here, u is the order parameter (e.g., a density of atoms) and f is the derivative of
a double-well potential F. A thermodynamically relevant potential F is the following
logarithmic function which follows from a mean-field model :

+ A’u— Af(u) =0, (8.1)

0. 0 1- 1+
F(s)= 5= 5+ 5((1 - 5)In(— )+ (1 + 5)In( : S)), se(=1,1), 0<6 <86,
(8.2)
1.e.,
0. 1+
f(8) = ~fes+ 510 —, (8.3)
2 1-v%
although such a function is very often approximated by regular ones, typically,
[P 2
F(s) = 7(s" = 1), (8.4)
1.e.,
f(s) =5 —s. (8.5)

Now, it is interesting to note that the Cahn-Hilliard equation and some of its variants
are also relevant in other phenomena than phase separation. We can mention, for ins-
tance, population dynamics (see [31]), tumor growth (see [7] and [86]), bacterial films
(see [81]), thin films (see [112] and [129]), image processing (see [9], [8], [21], [27] and
[42]) and even the rings of Saturn (see [130]) and the clustering of mussels (see [90]).

In particular, several such phenomena can be modeled by the following generalized
Cahn-Hilliard equation :

% + A% — Af(u) + g(x,u) = 0. (8.6)

We studied in [97] and [99] (see also [7], [27], [37] and [47]) this equation.
The Cahn-Hilliard equation is based on the so-called Ginzburg-Landau free energy,
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Yo = f (%wmz +F(u)) dx, (8.7)
Q

where € is the domain occupied by the system (we assume here that it is a bounded
and regular domain of RY, d = 1, 2 or 3, with boundary I'). In particular, in (8.7), the
term |Vu|> models short-ranged interactions. It is however interesting to note that such
a term is obtained by truncation of higher-order ones (see [20]); it can also be seen as
a first-order approximation of a nonlocal term accounting for long-ranged interactions
(see [65] and [66]).

G. Caginalp and E. Esenturk recently proposed in [23] (see also [22]) higher-order
phase-field models in order to account for anisotropic interfaces (see also [80], [125]
and [132] for other approaches which, however, do not provide an explicit way to com-
pute the anisotropy). More precisely, these authors proposed the following modified free
energy, in which we omit the temperature :

1 k
Wy = f — a D> + F(u) |dx, k € N, (8.8)
DM

i=1 l|a|=i

where, for @ = (1, ..., ;) € (N U {0})?,

o] = a1 + ... + ay

and, for a # (0, ...,0),

(we agree that D0y = y). The corresponding higher-order Cahn-Hilliard equation
then reads

8” : i 20
= —A;(—l) ;iaaz) u—Af@u) = 0. (8.9)
We studied in [33] and [32] the corresponding isotropic model which reads

ou

i AP(—Nu — Af(u) =0, (8.10)

where

P(s) = as', ar >0, keN, seR.

1

k
=1
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The anisotropic model (8.9) is treated in [34] and the generalized anisotropic model
(8.6) was studied in [35] (there, numerical simulations were also performed to illustrate
the effects of the higher-order terms and of the anisotropy). Furthermore, these models
contain sixth-order Cahn—Hilliard models, such as the phase-field crystal model (see,
e.g., [45], [96] and [97]).

Actually, in this paper, we are interested in the hyperbolic relaxation of the equation,
proposed in [57] to model the early stages of spinodal decomposition in certain glasses
and in [56] in the context of the phase-field crystal model (in that case, one speaks of
the modified phase-field crystal model). In particular, the modified phase-field crystal
model was studied in [75].

More precisely, we are interested in the study of numerical approximations for the
hyperbolic relaxation of the higher-order anisotropic generalized Cahn-Hilliard models,
assuming the existence, uniqueness and regularity of solutions; these issues will be
addressed elsewhere.

A related study, for the modified phase-field crystal model, can be found in [16, 58,
72, 136]. In particular, [58] proposed an unconditionally energy stable (finite element
method in space and second-order accurate in time) scheme, but without any theoretical
analysis. Furthermore, [72] derived a scheme with a space discretization based on a
splitting method and proved its energy stability, as well as its unique solvability. The
schemes used in [16, 136] were based on a convex splitting of the pseudo-energy for the
time discretization.

The scheme considered in this paper is a combination of finite elements or spectral
methods in space and a second-order stable scheme in time. More precisely, the space
is discretized by a splitting approach which is inspired by [58, 71, 72] and it turns out
that the finite element method, as well as the spectral method, which are contained
in an H' Galerkin approach, are both applicable. As far as the time discretization is
concerned, we apply the modified Crank-Nicolson scheme introduced in [63] which
has been successfully applied to the Cahn-Hillard equation, as well as to gradient-like
equations.

The structure of the paper is as follows. In section 2, we give some assumptions. In
section 3, we discuss the space semi-discrete problem and prove its energy stability and
unique solvability. We investigate the fully discrete problem in section 4 and present the
main analysis, including consistency, energy stability and unique solvability. In section
5, several numerical simulations are carried out to illustrate the theoretical results and,
especially, the effects of the higher-order terms and the anisotropy.

8.2 Setting of the problem and assumptions

In this paper, we consider the following generalized equation which reads, for k € N,
k>2,xeQcR¥(d=1,273),
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Pux,n)  oux,1) o 20 _
i+ —A;(—l) éaaz) u— Af(u)+yu=0, (8.11)
u(x, 0) = uo(x), au(;, D)o = o), 120, x€Q, (8.12)

with periodic boundary condition for a rectangular (d=2) or cubic (d=3) domain. 8 > 0
is a relaxation parameter, y > 0. The additional term yu can model, e.g., long-ranged
interactions (see [111]).

For the sake of simplicity, we assume that fQ ldx = |Q] = 1. Besides, we need some
assumptions on (8.11). Firstly, we assume that

a, >0, forle|=k. (8.13)

Secondly, the nonlinearity f is set to be a polynomial of odd degree with positive leading
coefficient and which vanishes at O, 1.e.

2p+1
f(s) = Z Kis',  seR, (8.14)
i=1
with p € N* if d = 2 and p € {1, 2} if d = 3. The restriction on p when d = 3 is due to
the use of H }W conforming finite element or spectral spaces (see (8.17)). We denote by
F the antiderivative of f which vanishes at 0, i.e.
2p+2 P
Fis)= > =5, VseR, (8.15)
i !
It can be verified that there exist constants ¢, c3 > 0, ¢,, ¢4 > 0, such that

(a) lf() < c1F(s)+cy, VYseR,

8.16
(b) F(s) > c3s* —cy, VYseR. ( )

In addition, we will make use of the Sobolev embedding H,,, ¢ L***(Q). In parti-

cular, there exists a constant c; = ¢,(€, p) such that

er

1
lleell 2022y < coluly,  Yu € H

1 (8.17)
where | - |, is a norm in H,,, defined by [ul} = [(u)[* + ||Vull§ with (u) = fQ udx, || - o is

the L? norm, and (-, -) is the associated scalar product. The map v — f(v) is Lipschitz

continuous on bounded sets of H,,, with values in L&*2/P*D(Q) c H; ] . We also have

H?, c C°(Q) with continuous injection.

per

We introduce the pseudo-energy
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per per?

E(u,v) = YhooL + 'gll\'/ll%l + %Ilb'tllzl, Y(u,v) € Hy,, X H;.

where v = v—), ||-]l-1 = ||(—A)’% -]l and (—=A)~! denotes the inverse minus Laplace ope-
rator associated with periodic boundary conditions with null average ; E(u, v) is indeed
well-defined. Multiplying (8.11) by (=A)~'ii, and integrating over Q, we have

d
28 u) = |l |*, < 0,

which guarantees that the pseudo-energy is nonincreasing in time. As mentioned in the
introduction, we will only focus on the numerical approximations in what follows and
will address other issues, such as well-posedness and regularity, elsewhere.

8.3 The space semi-discrete problem

8.3.1 The space semi-discrete scheme

For k = 2, the original equation (8.11) is equivalent to the following system :

U =v,
Bv, = —v+ Aw — yu, (8.18)
w= Z a,D*%u — Z a,D*u + f(u).
lal=2 lal=1
For the sake of simplicity, we denote the coefficients a, by
aj, la| =1, a; #0;
Ay =4 ' . . (8.19)
aij>0,lal =2, a¢;=a;=1,i=1,---,j;j=1,--- ,d.
ot ot ot
Thus, for d = 2, the coefficients of —u, % —Z are apy, di», ay, respectively, while
x| 0x{0x; 0x;
u 0%u
the coeflicients of . 7 are aj, a, respectively.
x| 0x;
. . . Fu .
By introducing the variables p;; = ~———,i=1,---,j, j=1,---,d,(8.18) can
Bxiﬁxj

be rewritten as
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We now describe the semi-discrete scheme. Let V), be a finite dimensional subspace
of Hll,e,(Q) In practice, V), could be a space of conforming finite element or a space
with spectral basis. Let {eh} denote a monic orthonormal basis of V), for the L? scalar
product such that e} = 1, where Ny, is the dimension of V/,.

We multiply each equation in (8.20) by different test functions in V, and integrate
over Q and by parts to obtain the space semi-discrete scheme which reads : find uy, vy,

Dijns Wi - Ry — 'V, such that :

(Osttp, b)) = Vi, G1),
BOVw Y1) = =V W) — (Vwp, Vi) — y(up, ),

Buh (94,]},
(Puh’ gl]h) ((9 axl (821)
apl h 0
(Wi &) = Z Z ( . f*’) Z aj(pjim &) + (Fun), &),
j=1 i=1 J j=1
for all ¢y, ¥y, Sijn, én € Vi, i=1,-+-,j, j=1---,d, with initial conditions :
un(0) = up, vi(0) = vy, p, vy € Vi, (8.22)
Then (8.21) can be written in the following equivalent system :

Uu =YV,

BV, =-V—-AW —vyU,

Pij = AuU (8.23)

d

w=> Z aijA;T Pi; + Z a;Pj; + VF,(U),

j=1 i=1

where

k a,l
de, Oe,

(@). A = (Vei, Ve icuisn,,  Aij = (a—xi, (9_xj

1<k,/I<Np»
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Np
(b). up(t) = Z ui(ney, = U(1) = uy(t), -, un, (D), vy =V, pijn = Pyj, wy, = W,
i=1
(©). Fu(U) = (F(up), 1), 5.t VFU) = (fun), €}, -+, (fun), ep")".
(8.24)

We must point out that, for each pair of (i, j), when i # j, A;; is not symmetric. When
there is no risk of confusion, we denote A;; by A ;. Besides, A; and A have the following
relationship :

d
A= ZA - (8.25)
=1

J
Eliminating V, P;;, W, (8.23) is equivalent to

d j d
ﬁU[[ + U[ =-A Z Za,-jA,-jTA,jU + Za]AJU + VFh(U) - ’)/U, t=> 0. (826)
j=1 i=1 =1
This corresponds to a space semi-discrete scheme of the original equation. Furthermore,
U denotes a solution of (8.26). Notice that the first row and the first column of A are
filled with 0, hence the first component of U, i.e. u,(t) = (u,(t), 1), satisfies

BOuy + Oy +yu; =0, t>0. (8.27)

We consider three cases depending on the sign of the constant 1 — 48y : (i) 1 — 48y >
0, (i) 1 —4By = 0, (iii) 1 — 4By < 0. We solve (8.27) with the initial conditions u;(0) =
(up, 1) =2 ul, By (0) = (), 1) =: 1" and get
(i) 0 0 0_.,0
vi = duy 4 Ayuy — vle/lzt
A=A A=A

W — Lud Au’ =W

a £ = /l 1 1 Ayt + /1 1 1 At
i (1) 1—/11 L e 2—/11 4 e

uy (1) =

9

b

where

-1+ /1 -4 -1-+/1-4
A = ﬁy<0,/12: '8)/<0'

28 28 :

(ii)

1
u(t) = [u? + (v(l) + %uﬁ))t]e—;ﬁt,

1 1
Aui (1) = W) - ﬁ(v? + @u‘f)t]e %',
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(iii)
0 0 .
ui(t) = () cos At + ————=Lsin Af)e” %',
46y — 1
0 0 (8.28)
0 i+ 2y — Lt
Oy (t) = (v cos At — ——=sindt)e ¥,
46y — 1
where 4 = /48y — 1/28.
Moreover, by a direct calculation, we find
O (D] < (), v}, 1), (8.29)
where
W — Lud Au’ =W
A ———e" + | ——e™,  1-4By >0,
M e b e By
L 1 1 L
i 1) = § T+ o) Sl L-4py=0.  (330)
1 |
(VO + ——"% + 2yu?))e %", 1-4By <0.
1 By -1 1 1
For each vector R = (ry,---,ry)’ € RY, weset R = (r2,--- ,ry)’ € RV, Then
U= (Us®), -, Uy, )7 satisfies
d j d
BU+ U =-A| > > ayAlAyU + )" ad;U + VEU) |- yU, (8.31)

j=1 i=1 j=1

where A = (ar)2<ki<n, > the submatrix of A obtained by deleting the first line and the first
column of A, is symmetric and positive definite.

8.3.2 Discrete energy estimate, existence and uniqueness

We start by introducing some norms. Let | - | denote the Euclidean norm in R or
RM+~!, Besides, we will also use the quadratic norm | - |_; in R™~! which is defined by

IRl.; = (RTAT'R)'?, VR e RV

It is easy to show that |A*U| = |A*U|, Vs>0, U € RV,
Moreover, we define
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1 G IR
(a). Eh(U) = 5 Z Zaileilez + 5 ZaleJZ U|2 + Fh(U),
J=1 =1 =1 (8.32)
B

(b). E(U,V) = EU) + SIVE, + ZIUE,.
For convenience, we set
En(0) = E(U), U (1)).

Theorem 8.3.1. Assume that U € C*([0, T); R™) is a solution of (8.26). Then it satisfies
the energy equality

d )
Eah(l) + U2, = 0 (f un), 1), (8.33)
and the energy estimate
t
En(n) + f (U s < (E4(0) + ¢/ @lu] + Epea @i, (8.34)
0
forallt € [0,T), where ¢’ depends on f,aj,ajj,1 < j<d,¢,c givenin (8.45).

Proof. Multiplying (8.31) by UTA~! and using the identity

e d
UIVF(U) = U VFER(U) = i (f (up), 1) = 7 FuU) = 0 (f (up), 1),

we obtain

d
+ U2, + = FuU)

1 d
[ U2, + Z Z aijlAyUP + Z G|AZUP +I0P,

oo = (8.35)

= Our (f (un), 1).

Note that |A;;U* = |A;;UP?, |A U|2 IA: U|2 Then reorganising (8.35) yields
1 | - 1 . )
[ ZZa,AAUm + 5 Zalej UP + Fy(U) + 5BIUL, + 510E, |+ 10,
j=1 i=1

= Oy (f (un), 1),

(8.36)

which is precisely the energy equality (8.33).
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We now prove the energy estimate (8.34). First, by assumption (8.16)(a), (8.33) gives

d .
ES’“(’) + U2, < 10u)(c1 Fp(U) + c3). (8.37)

Then by the discrete Holder’s inequality, (8.25), and assumption (8.13), we have

J

d d d
AUP =] Y AUl <d |l < — ™ Z Z aylA,UP, (8.38)
J=1 j=1 =1

1<j<d =1

which, applying Young’s inequality, yields

|Za]|A2U|2| < max |aJ|Z|A UP = max i a,[UT AU

= (8.39)
maxXi<; a;

( IS]Sdl jl) |U|2

< KAUP + M
K

Taking k = and applying (8.38) yields

min; <;<q{a;;}
d

. N2
|Za’|A e ZZaUlAUUl +¢UP, with¢ = d(max<j<q [aj]) .

4 min{a
j=1 =1 1<]<d{ i

As a consequence, we obtain

d ] d .
2E,(U) = Z Z aijlA; Ul + Z aj|A?UP +2F,(U) 2 2Fy(U) —clUP.  (8.40)

j=1 =1 =1

Note that

2 2 2 c3 4 c
U = llunlly < Nluallys < ?Iluhllﬁ + 1o Ve > 0. (8.41)
3

Then taking ¢ = ¢ and by assumption (8.16)(b), we find

Fy(U) = (F(up), 1) > csllugllys — ca > €UP - ¢, (8.42)
22
where ¢ = — + ¢4. Hence,
4C3
2E,(t) = 2E,(U) > F(U) —¢. (8.43)

Plugging (8.43) into (8.37), and note (8.29), we deduce
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d .
0 + U2} < 1000]Q2e1E1(1) + ') < e}, v}, DQ2e1Ex(1) + ¢,

where ¢’ = ¢;¢ + ¢, depends on f,aj,a;;,1 < j < d. Then applying Gronwall’s lemma
yields

t t
&m+j}@w&ﬂmmws&mwm+fadﬁﬁﬁwwwm, (8.44)
0 0

A
where 7(t) = 2¢; f c(u?, v(l), s)ds. According to (8.30), we know that 77(¢) is a monotone

0
increasing function which can be bounded by

n(t) < 2¢1(@luf] + Epi),

with
() 1-4By>0, ¢=——, ¢=—2_;
Vi-48y \1-48y
(i) 1-4By=0, ¢=1, ¢ = 4p; (8.45)
(i) 1-4By <0, ¢=—L_ &= PUENH-D

Thus we derive

t
En(1) + f U()P ds < (E(0) + ¢/ (@luf| + Evy)e>r @D,
0
which finishes the proof. O

Remark 8.3.1. We can also deduce a lower bound for E,(U, V) : YU,V € RM,

inj<jcqla;;} B
2

m 1 . Yo
En(U, V) > 2 |AU|2+5|U|2+ |V|%1+§|U|%l—c, (8.46)

min;<j<qfa;;} .

where ¢ depends on F,aj,a;;,1 < j < d.In fact, by (8.38) and taking k = — = in
(8.39), we get

d j d
1 1 1
Eh(U) = 5 Z Z a,-jIAilez + 5 Z alelz l]l2 + Fh(U)
=1 =1 =1
min; < j<q{a;;}

> 14 AU - ¢|U)? + F,(U).

Taking c = pu:=c+ % in (8.41) and plugging it into (8.42), we have
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inj<j<qla;;}

mi 2
E,(U) >

1 M
AUP + U — (F—
1d |AU] +2|U| (403+C4),
which gives (8.46).
Remark 8.3.2. If y = 0, the behavior of u(t) is straightforward. In fact, in that case,
solving (8.27) yields

Ouy (1) = v(l)e_’/ﬁ, u (1) = ﬁv(l) + u? —ﬁv?e_t/ﬁ,

and the energy estimate (8.34) changes into

'
En(t) + f |U;(S)|%1ds < (Ex(0) + C'ﬁ|v?|)e2c'ﬁ|"?|_
0

Theorem 8.3.2. For every U°, VO in RM:, (8.26) admits a unique solution U € C*(R,, RV
which satisfies U(0) = U°, U,(0) = V°.

Proof. First, by the Cauchy-Lipschitz theorem, we know that (8.26) admits a unique
maximal solution U € C?([0, T*), R™) for the given initial conditions. Moereover, by
the energy estimate (8.34), the definition of &;(¢) in (8.32), and (8.46), |U,|_; and |U| are
uniformly bounded for ¢ > 0. Therefore, this and estimate (8.28) on d,u; = (J,u) imply
TH = +oo0. O

8.4 The fully discrete problem

8.4.1 The fully discrete scheme

We use the scheme proposed by Gomez and Hughes ([63]) to discretize in time
which can be regarded as a Crank-Nicolson scheme, together with a second-order stabi-
lization term. For this purpose, we use some decomposition for F' and f (such a decom-
position is always possible for f satisfying (8.14), see [72]) :

(a) F = F, + F_, where F, and F_ are polynomials such that

FY >0,F® <0, deg(F.) < deg(F).

(b) f = f, + f,where f, = F,, f = F_, and there exits two constants cs, ¢, > 0 such
that

1 1 ” "
E(If(r)l +1f()D) + E(S S RUNGIERIAG))
<cs(F(r)+ F(s)) +cg, Y, s € R.

(8.47)

Remark 8.4.1. In particular, for the usual cubic nonlinear term, f(s) = s> — s, then
fi = f, f- =0, so that the above assumptions are automatically satisfied.
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Let 7 > 0 denote the time step, (u,V)) € V, X V), be the initial datum. The fully

discrete scheme reads : for n > 0, find (', vi*!, p7]+h1/ 2 "“/ %) € (V;)* such that

MZ+1 n '
(—L, ) = "2, ),
VZH Vh n+1/2 n+1/2 n+1/2
ﬁ( = l//h) (th th) 7(” l//h)»
+1/2
OLijn
n+1/2 i
(p,]+h/ gljh) - ( ; 0); ]

' d j n+]1/2 o8, (8.48)
n+ ijh
&h) = Z:;Z [ ox; 8)@)
ny 4 n+l
SPN L

((u"“ WYLl + £ ), ),

for all ¢y, Wi, ijnoén € Viwi = 1,-++, j, j=1,--- ,d. The notation u}""/* := ("' +u")/2

stands for the appromixation of u;, at time #,.1/> = (n+ 1/2)7. The same holds for p"+1/ 2,
n+1/2 n+1/2
Vo Wi -

Following the notation in (8.24), we can rewrite the fully discrete scheme in RV :
let U°, V* in R For n > 0, find (U™*!, V!, PI712 Wn#1/2) € (RM)3 which solves

Un+1 —_pyr
T

IBVn+1 -y — 2 _ g2 ,}/Un+l/2,
T

w2 = ZZ“U l]TPn+1/2+Z Pn+l/2

j=1 i=1
N VF,(U") + VF,(U™")
2

— Vn+1/2

(8.49)

_ G(Un, Un+l),

where G(U", U"“)— ((u’“r1 U (f7 @) + £ ), e))i<icn,

Eliminating P?j“/ 2 and W"+1/2_ the scheme becomes
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8.4. The fully discrete problem

(]’H—1 - Un _ Vn+1/2 - O,
T
Vn+1 _ Vn d J d
ﬁf + Vn+1/2 + A(Z Z a,-jA,-J-TA,-jU”“/Z + Z ClejUn+1/2 (850)
=1 =1 =1
VF,(U") + VF,(U™!
+ ]’l( ) 2 h( ) _ G(Un, Un+l)) + )/Un+l/2 — O

We now check the consistency of the fully discrete problem.

Proposition 8.4.1. (Consistency). The scheme (8.50) has a second-order consistency

error in time, i.e. any solution of the space semi-discrete problem (8.23) satisfies the
fully discrete problem (8.50) with order O(1?).

Proof. We need to prove that

U(tn+1)T_ U(ll’l) _ Ut(tn-;-%) _ w — V(tn+é)) = O(Tz), (851)
and
d Jj
POy, ) 4 S v, ALY D adA
j=1 i=1
Utun) + UG,) d (U(fn+1) + U1 )
- | A, - :

N VF;,(U(Z‘,,)) +2VFh(U(tn+1)) _ VFh(U(trH%)) -GWU ), Ut )]

. 7(U(rnﬂ); Ultn) U(fn+;)) _ o).

Let (U, V) be a solution on a finite time [0, T]. Since f, is a polynomial, we infer that
(U, V) € C*([0, T]; RN x RN+) by a bootstrap argument.Using Taylor’s expansion, it is
obvious that the midpoint scheme has a local truncation error of order O(7?). Also note
that, owing to [72] (see Proposition 4.2, page 16),

IGU(t,), U(tye1))leo = O(T),

where ||, stands for the maximum norm in R™:. Hence the proof is complete. O
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8.4.2 Existence and discrete energy estimate

Theorem 8.4.1. (Existence for any 7). For any (ug, vg) € V, X V,, there exists at least

one sequence (u}, v/, p;’;; 2 wZ”/Z) in (V;,)*? which complies with (8.48).

Proof. Let (U", V") be fixed in RV, We eliminate V"*! in (8.50) to obtain

2 Un+l —_y Un+l _yr d J Un+1 U
ﬁ (— - Vn) + —+ A[Z Z aiinjTAij—-'- (853)

T T T

Un+1 + Ur
— 0

U+ ur VF,(U") +VF,U"™!
+ZajAj N W(U™) a( )

_VHn Un+l ]+

J=1

where VHZ(U””) is defined as follows. First, we introduce a polynomial with two va-
riables

1
g(r, s) = E(s - (fl(r) + f(s)), rseR. (8.54)

By assumption (8.47), we know that g is a polynomial of degree at most 2p + 1 and
its partial degree with respect to the second variable s is strictly less than 2p + 1. Then
g can be written as

g(r,5) = ) beirs, (8.55)
k1l

where the coefficients b;; € R and

0<k<2p+1,0<I<2p+1,k+1<2p+1and eitherk<2orl/<2.

Secondly, let us assume that

Sl+1
h(r, s) = ; bt . (8.56)
so that d,h(r, s) = g(r, s). Then we define H}(U) = (h(u}, uy), 1) with u;, ~ U, so that

VH,(U) = (g(u),, up), e<i<n, = GU", U), (8.57)
which explains the presence of VH}(U) in (8.53). Moreover, By (8.56) and Holder’s
inequality, we have

H(U)] < Collulfh gy + 1) VU € RY, (8.58)
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8.4. The fully discrete problem

where the constant C,, depends on [|u} |20+
Then we replace U with (u;, U) in (8.53) to get

2 n+1 un+1 —u"
,3( _ v’f) e 1,7 (un+1 +ul) =0, (8.59)
T T

T

2ﬁ - Un+1 _ Un . . 1l]n+1 n d J ’ Un+1 Un
— A —— - V" + A + lAA 8.60
s T 50

T j=1 i=1

U+ gn VEL(U") + VF,(U™!
+ZajAj N W(U") W(U")

_VHNU™Y + LA O+ U) = 0.

Note that (8.59) determines u’“rl uniquely. As far as (8.60) is concerned, let us consider
the minimization problem for the function

B

) . 2
o B, - %
5

G :UeR™ (VHTA 1U+—|U—U 2,

+ 20+ 0+ Z Za,,m,,(U FUDP+ 5 Za,m U+ 8.61)
j 1 i=1
VE(UYT . o

where F'(U) = F,™',U), H(U) = Hu!",U). We show that the minimization
problem admits a solution which is precisely a solution of (8.60).
In fact, by (8.14), (8.15) and the Cauchy-Schwartz inequality, we have

2p+2

FZ(U):LZ _ ”+1+Zueh)dx

=2 (8.62)

Kap+1 2p+2 2p+1 : Np—1
2 n 2|| il ope = Sl 50 + 1), YU € R™

where ¢/, depends on the coefficients of F. Moreover, by the definition of I:IZ(U ) and
Young’s inequality, we have

O] < culull 20 + 1), YU e RN (8.63)

[2p+2

where ¢, depends on ||u;||;2»+2. Notice that
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ATVP < el VP, ATV <V, YV e RN (8.64)

where the coefficients ¢+, ¢; can be chosen to be

1
ct > —————, ¢;> max {4;
' min {1.)7 T i<jsN,ol b
1<j<N,—1

Aj(j=1,---,N, — 1) being the eigenvalues of A. This yields, by the Cauchy-Schwartz
inequality, the equivalence of norms in RV~! and (8.64),

. L 1., . 1. Ci . 1.
AVYTATO < SIATVOP + <[V < 2O, + =V
(@). (V") |_2| | 2| |_2| % 2| |
I 1.
< c|UP + —IV"IZ = cllill§ + —IV”IZ,

(b). |ZaJ|A (U + UM < max |a]|Z A2 (U + UM = max X laflA* (U + U™
j=1
< € max IajIIU + U < e(llinlly + Nl 115)-
(8.65)
Combining (8.62) to (8.65), we obtain

/

A2p+1 242 Cp 2+ 2
GWU) > 22p sl 5, — (e + —)||Mh||L§p+z — cllitsllo” = ¢”,

+2)

where ¢, ¢” depend on h, F and u;. This implies that G(U) tends to +oco with respect to

|U|. Then the continuous function G admits a minimizer U in R¥~!, which implies that
vG(U)| g-g = 0. Therefore, U is a solution of (8.60). m|

The first component of the numerical solution at each time step «/*' can be estima-

ted, due to the special basis {eh} 1oy Cchosen in V;,. More precisely, the following estimate
holds : for y > 0,

VI < eq"(ul] + b)), (8.66)

where ¢ and g € (0, 1) are given by
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2y + 1+ /148y
=
4B + 21 +/1 — 4By —y1> 4B — 2141 — 4By — y7?
q:max{ 4B + 27 + y1? ’ 4B + 27 + y12 }’
(8.67)

@) ¢ =

AB+T—yr2 4B —T—yP2
(i)  =(@y+2), g=max{aorTYT BTyl
4B + 27 + y12 7 4B + 21 + y1?
2(y + \By) :|,3—772+27i\/4,8y—1
VABy — 1 > 4 4B + 27 + y1?

based on the sign of 1 =48y : (i) 1 =48y > 0, (ii)) 1 —4By =0, (iii)) 1 — 4By < 0. See
Appendix for details.

(i) &=

Remark 8.4.2. When y = 0, estimate (8.66) is simpler. Indeed, taking ¥, = 1 in the

28 —
second equation of (8.48), we find vi*! = qv! with q = i L Thus
2+71
n n L+]ql
W<l < = lal AL (8.68)

0

It is clear that |q| < 1, so that the estimate now only depends on vy.

We now state a Lemma which will be useful in the proof of the energy estimate and
was proved in [72].

Lemma 8.4.1. Let g € C3([0, 1]; R). Then the following identities hold

! 1 1 1 (!
f g(s)ds = E(g(O) +g(1)) - Eg”(O) ~3 f k3 (0)g?(o)dor, (8.69)
0

0

! 1 1 1 (!
f g(s)ds = E(g(O) +g(1)) - Eg”(l) +3 f k; (o) (o)dor, (8.70)
0 0

where ki (o) = (1 — 0)*Qo + 1)/6, k;(0) = 0°(3 — 207)/6 and g denotes the third
derivative of g. In particular, k(o) > 0 and k3 (o) > 0 for all o € [0, 1].

|
n+s

Theorem 8.4.2. (Energy estimate for any 7). If (U", V", Pl.j , Wit 3 Y(n = 1)is a se-

quence in (RM)3 which complies with (8.49), then for all n > 0,

ah(UnH’ Vn+1) _ (c)'h(Un’ Vn)
T
As a consequence, for all k > 0, we have

+ VR < W, (8.71)
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k-1
8h(UN0+k, VN0+k) + Z T|VN0+j+%|%l
=0 (8.72)

g
<CXP(86561 (ufl + MDELU™N, Vo) + C7C (Iuol + Vi),
where Ny = No(B, cs, T, |u(1)|, |v(1)|) € N satisfies
1
2¢s¢tq™ (] + pI)) < > (8.73)

with c¢; depending on f, f., [-, ¢,q and given in (8.67), 0 < g < 1.

Proof. Throughout the proof, we will assume that y > 0; when y = 0, the energy
estimate can be proved similarly (in fact, the proof is simpler, see Remark 4.4 below).
Let 6u} = u*' — u. Since F’, = f, and F” = f_, we have

1
F ™) - Fo(u}) = ou f fo @} + séu})ds, (8.74)
0

1
F ™y - F_(u}) = u} f -} + séu})ds. (8.75)
0

Setting g(s) = fi(u, + sou;) in (8.69) and g(s) = f_(u; + sou}) in (8.70), we get

( ")2 " (6uy)’
f+ h)_ h

f fr(uy+souy)ds = (f+(uh)+f+( ity f ks (o) f (up+oduy)dor,

0

2
f f-(uj+s6up)ds = (f )+ f-(uy™) ( h) — /7 (u,

n+1 ( h)3

2

f ky (o) f (up+oduy)do.

Then combining (8.74) and (8.75) leads to

(5"

2
Fu™) - F(uh>—6uh[ (FG) + Q™) = == (7)) + f7 @] = o, (8.76)

where

n\4 1 |
- (f K3 (0)f" () + odui)dor ~ f ()l + o5ul)dor) > 0,
0 0
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with &5 (o), k3(0) > 0 by Lemma 8.4.1 and f;” > 0, f” < 0 by (8.47)(a).
Choosing &, = éuj in the last equation of (8.48) gives

n+1/2

oou’} d
n zh n n
ATTIED ) WHLLONE Ry
J

j=1 i=1 j=1

=(F(u,™), 1) = (F(up), 1) + (@, 1),

which can be rewritten in vector form and simplified by eliminating P?j”/ 2

F (Un+l) _ Fh(Un) + (a,n 1) — (Wn+1/2)T6Un

IRSEY 2 | T2 Ipmp (8.77)
=52, 2, aulAgU™'F = 1A;U"P) ~ 5 Z a(A;UMP = AT U,
j=1 i=1 =1
Notice that the second equation in (8.48) implies that
) . Vn+l _ Vn ) )
WM = AT (B——— + V™I 4y UM), (8.78)
T

Plugging (8.78) into (8.77) with 6U" = TV'H'%, we deduce

ExU™Y) = EyU™ + (@, 1) + é<|V"”|% SR+ o,
# 20, = D0mR, =

which yields the energy estimate (8.71). Setting &, = 1 in the last equation of (8.48)
gives

w2 = ((f(uh) + f), 1) - ((u"“ — U2 (fL @D + @y, D). (8.79)
This yields, by (8.71), (8.43), (8.66) and assumption (8.47)(b),

& (Un+1 Vn+1) —&(U", V) + T|Vn+%|%1
<ty
<tp"*?) (es(F@up) + Fuy™) + ¢, 1)
<t} E|(2C5(Eh(U"+1) + E(UY)) + ¢7),
<teq"(Jui] + DQes(Ex(U™") + Ex(U™) + ¢7),
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where ¢; = ¢¢ + 2cs5¢ depends on f, fi, f- and a; ;. We set

B

= EiU V) = B(U + IV, + %lU"l%l, gl = (U™, v,

and let Ny = No(B,7, ¢s, 7, [ull, M)]) € N satisfy (8.73). Then for n > Ny,
(1 = 2¢sérq" (U] + VDE! + V32,
< (1 + 2¢serq" (W] + WIDE] + crérq"(ull + MI)).
Dividing this inequality by (1 — 2¢s¢rq"(lul] + VY))) and noting that

1 1+x 1
<l+4x<e¥, V 0, -
R +4x <e™, x€(,2),

we obtain

. 1 Fr (1,0 0 -
EF + |V < ST UNDE 1 ez (Wl + DO, V> Ny,

By induction, for all k € IN,

k-1 k—1
. 01 .
EN 4+ 3 VNI < exp@eser(u] + ) Y ¢ e
J=0 J=0
k-1 k—j-1
- 0 0 No+i\ . ~— No+jr1..0 0
+ > exp@eser(ul + 1D " g% ererg Hu] + W),
j=0 i=0

k—1 . No
Owing to the fact that Z "t < 1(]—, we deduce (8.72) and the proof is complete. O
—q

=0
Remark 8.4.3. If the initial conditions satisfy ((u)) =) = 0, ((V)) =0 = 0, then
estimate (8.71) reads :

EU™, VY VIR < EUM V), Vn >0,

meaning that the energy decreases. Moreover, the energy estimate (8.72) reduces to, for
anyk>0:

k-1
EUL VO + ) TlVIR, < E,(U°, V).

J=0
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Remark 8.4.4. Since 0 < g < 1,we infer from the energy estimate (8.72) that, for Ny

large enough,
[ee)
DTV, < oo,
n=Ny

. 1 . . 1 .
Hence, V'*2 — 0 as n tends to +oo. This, together with the estimate of VTr2 in (8.606),
) . 1
implies that V"2 — (.

Remark 8.4.5. For the special case y = 0, as mentioned in Remark 8.4.2, the estimate

for |V1+ 2| is much simpler. Furthermore, the energy estimate (8.72) can be simplified to
read : for all k > 0,

k-1 No
& (UN0+/< VNO+]<) + ZTlVNO+]+2| 1 = exp(865 l

Jj=0

M

Vi,

o T DEU. V) + e |q| |

1 1
where Ny = Ny(B, cs, T, Iv(l)l) € N satisfies 2C5T|q|NO|V12| < > instead of (8.73). Thus, Ny

does not rely on u? anymore.

8.4.3 Uniqueness

To prove the uniqueness of the solution of the fully discrete scheme (8.48), we need the
following lemma.

Lemma 8.4.2. For the constant g given in (8.67), the term 7 ‘ can be bounded by a
—q

constant independent of T.

Proof. By (8.67), we know that ¢ has three expressions depending on sign sign of
1 — 4By. We discuss the three cases separately.

For case (i) 1 —4By > 0,if 0 < 7 < +/4B/7v, then

48 + 211 = 4By —yr> 4B —27+/1 — 4By — y7?
g = max | ,
4B + 21 + y1? 4B + 21 + y1?
4B+ 211 - 48y -
B 4B + 21 + y1?

48
T 4B + 21 + y1? 4B + 21 + y1? 4'3"'\/;

l-q 201 - \/1—4,87)+2y‘r 2(1 — /1 -4y ) 1- m;
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otherwise, if \/48/y < 7 < 1 (if 4/4B8/y > 1, it is not necessary to look further, as we
always assume that 7 < 1),

b

{4ﬂ+2‘r 1 4By —yr* 48-21 1—4,8)/—7T2}
g = max |

4B + 21 + y1? 4B + 21 + y1?
3 —4B + 27 /1 — 4By + y1°
B 4B + 27 + y1? ’
T (4B + 27 + yti)1r < 48 + 21 + y1° 486+2 +y

=g 8g+2e(1— V1-43y) 21— =4y 21— 145y

1
Similarly, for case (i) 1 — 4By =0, if 0 < 7 < —, then
Y

4+1—yr*  AB-—T—yrr  AB+T—yT

q:maX{|4,8+27'+y‘r2 4B+ 2T +yT2 4B+ 27+ 12

48 + 27 + y1° 4
T - p+ 2T+ T <4,8+2T+y‘r2§—;
1 -g¢q 1+ 2yt 0%
1
otherwise, if — < 7 < 1,
Y
4,8+T—’)/T2 4,8—7'—)/‘1'2 —4,8+‘r+y‘r2
q = max{| =

4B+ 27 +y12 " AR+ 2T+ y12  AB+ 2T + y72’
T 4B+ 2t+yDT
l-q 8+ 1

For case (iii) 1 — 4By < 0, recall that we always assume 7 < 1. Then

_|4,3—’}/T2+2Ti\/4ﬁ’y—1|_ 4B = 27 + y1?
1= 4B + 21 + y1? 4B+ 2t +yr?’

T VAB + 27 + yT2(\J4B + 2T + y12 + \J4B = 27 + y12)

<AB+2T+yTP <4B+2+7.

l-¢ 4
4 2
< B+ 21+ yT <4ﬁ+y+2'
2 2
This completes the proof of the lemma. O

Theorem 8.4.3. (Uniqueness for small 7). For any (u), }) € V;,x V), by choosing T suf-
ficiently small, but depending on h, there is a unique sequence (u;, v}, p:l;hl 12 WZH/ 1
which complies with (8.48). Moreover, the choice of T can be made independent of h if

(up, V0 is a family such that
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Kup | + KVl + 1Ex s, viDl < €, (8.80)

for some constant c* independent of h.

Proof. As in Theorem 8.4.2, we only consider the case y > 0. Assume that (u}, v}) is
uniquely determined for some n > 0. By (8.59), we know that /™! = («/*') is uniquely
determined, so that it is sufficient to show that i/*' ~ U™! is uniquely determined by
(8.60). Then v!*! =~ V"*! can be recovered by the first equation in (8.50).

Suppose that (8.60) has two solutions &*! ~ U™*!, i/i*! ~ U™, By subtracting the

two resulting systems and multiplying by 6U = U™ — U s ouy, = ouy, we deduce

d d
2 ) )
2, 2, lAidUF +3 2 A j0UF + 0UE, @31

J=1

2 . 1 .
T—waEl +—I6UF, +

| =

th(UIHI) _ th(glﬁl)

— (5T
= —(oU) >

+@U) (VHNU™") = VHI(U™)).

According to (8.14), f” is a polynomial of even degree with strictly positive leading
coeflicient, so that there exists a constant ¢, > 0 such that

fi(s)>—cs, VseR. (8.82)

This implies, by the mean value theorem,

th(UnH) _ VFh(ngl) ~ 1

- 1
©0) 2 2

(Fr™y — £, 6uy) > _%f|(5U|2. (8.83)

By the definition of g(r, s), (8.17) and Holder’s inequality, we find
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(U (VHR(U™") = VH,(U"™)| = I(g(uZ,M"“) g(uh,u"”) ouy)|

2p
n n n n =j-1
DI AR CAR T ”)>6uh>|—|2bk,«uh> mZ(u gy o)l
k+1=0 k+1=0
n n I=j-1 :
Zwm () Z(u Y™ @iy
k+1=0
n n I-j-1

Z bl - 1Sl l1ad)* Z(u D™ e

k+1=0

. n el l—j-1
suéuhuiz,ﬂzZwkl@u(uh) O LA I

k+1=0

p+l

1 INGERIVES
<Nty Z |bkz|Z<||(uh) S el e

k+1=0
1 14/=i-1
=l6124 ]2, Z |bk1|Z A (A Y b i [P
k+1=0

2p—k
2p+2

NG INGIEE-
<l6tt4 ]2, Z |bkz|Z A A k|| s ) k|| 2t )

k—./
k+1=0
2p -1 o
-2 1 1y/-i-1
00 S ST YT O 7 AW 77 AN (7 i e
L L2p-k=j
k+1=0 j:O
1 112p—k—j
<l6t4]1,. Z b Z [ e A 17 [
k+1=0

. . 2ice 2 21 4L 2
éCn”é’/‘h”Lzmz < cn||6uh||L2p+2 < C;,Cs|6uh|1 = C;Cs|A25U| )

(8.84)
where
1 112p—k—j
= Z b Z [ 7 O [ 7 e
k+1=0
=c (||Mh||L2p+2, ||u"“||sz+z, [l | 20e2) (8.85)

! !
<cp(uylis gy 1y, 1™ 1)

<c,(IAU"|,IAU™ | JAU™ ) (U™, 1O, 1)),

recall (8.17) and the fact that |v,|3 = [(vi)I* + Vw5 < [VI* + |AV]%, Vv, € V, in the last
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inequality, and for simplicity, we use the same constant c;,.
Plugging (8.83) and (8.84) into (8.81), we derive

B 1
ZISUP, + —I6UP, + ailA SUP + = alA SUP + |6U|

2 J J J 1

T T ,Z‘ Z‘ 2 Z (8.86)

cro. .
< Ef|5U|2 + ¢l AlASUP.
Owing to Young’s inequality,
il o E . 1 )
|A26U|" < Z|ASU|" + —|oU|°, Ve > 0.
2 2¢e
Furthermore, owing to the fact that

m1n {a;;}

(a). ZZauml,aw e

]111

(8.87)
(D). Iza |A25U|2| < max{la NASUP,
j=1
it follows that
2
(c’.c* + L max {la |}
2 ) 1 . ) c nrs 2 gc / .
Lisve, + ove, + Lisve, < (< +a SE sup,  (8.88)
T T 2 2 2 1m'1111 {ajj}
<j<

where we set € = miny <j<, {a;;}/d(cjc? + 3 max<jeq {la;1}).
Let (uf), v)) be given initial data. Setting
- 1
4ese(lul] + D

then (8.73) is satisfied for Ny = 0. Therefore, by (8.46), the energy estimate (8.72) and
(8.85), ¢/, in (8.88) is bounded by a constant C which depends on ¢, 7, E,(U°, V°), i.e.

-
< C(l—,Sh(UO, VoY),
—-q

By Lemma 8.4.2, we know that ﬁ[ is bounded by a constant independent of 7, which
means that ¢, is bounded by a constant independent of n and 7, but still depending
on h because of &,(U° V). By choosing 7 small enough (depending on /) and the
equivalence of | - | and | - |, in RV~!, we deduce from (8.88) that §U = 0.
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Now suppose that (8.80) holds. We estimate (8.86) in a different way. By Young’s
inequality, we have

. . .. 1 .
ATSUI sﬂm(sm2 + —|(5U|2
%|A6U| + —(81|A25U| + —|A‘76U| ).

1.e.

1 o .
A26UP < &|ASUP + TZ0UL, Ve >0.
€

Owing to this and using Young’s inequality again, we find
IR (R
loU|” <|A20U| +Z|6U|—‘

o R N
<&)lASUP + (—5 + I6U,, Ve > 0.
de; 4

By taking
1rg]l%{a,,} lrgjlgl{a”}
g & =—"
'Y dde v max{la,l}) 27 2des

and in view of (8.87), we deduce

2 . 1 . ) c 1 2 < : )
T—’[;|6U|31 + ;|6U|31 + %|(5U|%1 <|L—=++ SUP,. (8.89)

2 42 4 46>

1
Thanks to (8.80), let 7 < dozer Then (8.73) 1s still satisfied for Ny = 0, and ¢}, is
csCe

bounded by a constant independent of n, T and A. By taking 7 small enough (independent
of h), we have U = 0 and the proof is completed. O

Remark 4.5. For y = 0, the uniqueness of the solution also holds, and the condition in
(8.80) can be reduced to

0 0.0
[Vl + 1En(uy, vl < €7,

which is independent of (u).
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8.5 Numerical simulations

8.5.1 The one-dimensional case

In the one-dimensional case, problem (8.11) reads

Byu + 0 — axut® + a1u® — (F(u))” +yu = 0.

We set Q = [0,2n], h = %”, x; = ih, i =0,---N. Let V,, be the space of P, finite

elements, namely V), = {v € C([0, 27]); Vlx,x,;) € P1, i =0,...N = 1; v;,(0) = v,(2m)},

..........

4 to this basis. (Indeed, we have to take into account the matrix B since the basis is not
orthonormal.)

Mimicking the computations in Section 3, formula (3.14) becomes
BBU, + BU, + A(a,B'AB'AU + a,B'AU + B'VF,(U)) + yBU = 0.
Hence, multiplying the latter equation by UT BA™!, we obtain, instead of (3.15),
E(U.V) = S(UTABAU) + S UTAU + Fy().

E(U.V) = EU.V) + §VTBA-IBV+ YuTpABU.

The simulations below were performed with the software MATLAB. we chose a; =
-2, a, =1,8=5,N =300,7 = 0.05, f(u) = u’ — u. As far as ) and v are concerned,
we use the P; projection of 2 kinds of initial conditions :

() ug(x) = "1 — 0.1 for the case (up) # 0 and uy(x) = cos x + 0.3 cos(3x) for the
case {up) =0;

(i1) vo = 0.2 for the case (vo) # 0 and v, randomly distributed between —0.05 and
0.05 for the case (vo) = 0.

In Figure 1, 2, 3, we display E,(U, V) (in blue) and &,(U, V) (in black) with respect
to ¢, for different combinations of 7y, uy and v,. These simulations are consistent with our
theoretical results, namely Theorem 8.4.2 in case y # 0 and Remark 8.4.5 in case y = 0
(see also [72]). Indeed, when y = 0, the energy &), is decreasing when (vy) = 0, whatever
the value of (u) is, and, when y # 0, the energy &, is decreasing when (vy) = 0 and
(up) = 0. We recall that in Theorem 8.4.2, u = (uo, 1) and ) = (vy, 1) are now written
as |Q[ (up) and €] (vo).
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R 00 R 0o R

@y =0,{v)=0,up) =0 (b)Y =0,{vo) =0,Cup) #0 (c)y =0, (vp) # 0, Cup) # 0
Ficure 8.1 — E;, (blue) and &, (black)

@y =2,{vo)=0,Cup) =0 (b)y=2,{vo) =0,Cup) #0 (c)y =2, (vo) # 0, (up) # 0
Ficure 8.2 — E;, (blue) and &, (black)

0 R

@7y =5,(vo)=0,u) =0
Ficure 8.3 — E}, (blue) and &, (black)

8.5.2 Simulations in two space dimensions

1. Phase-field-crystal simulations (y = 0)
This time, the computations were performed with the software FreeFem++ [77], using
a slightly different scheme :

Given (u, 1)) € V; x Vj, find (!, vit!, pie!2 w2y € (V1Y n > 0, i = 1,2, such
that :
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(a) t = 1000 x 107!

(m) 7 = 8000 x 10~

(n) = 8000 x 1072

8.5. Numerical simulations

(0) t=8000x 1072 (p) r = 8000 x 1072

FiGure 8.4 —uy = uf)l), B=0.1,6 =0.2 (column 1), £ = 0.8 (column 2), € = 1.4 (column
3), € = 2 (column 4).

u,

n+1

ap
2

(Pl 4w = —[

n+1/2 fh)+2(

[

6pn+1/2

(9x2

auz+1/2 5{,~,
6xl'

’ axi

n+1 n
( — ¢h) =2, ¢,

n+1/2

&3]

(9x2

2)-¢

5§h

fag) + fuy™)

2

,B(Vh - -V, l/’) (Vn+1/2 Un) — (VWZ+1/2 V) — y(unﬂ/z W,

h],i:1,2

) + Z(Ph,,fh))

ap ap;;”z %
2 c'?xl ’c’?xl

1
,fh)—ﬁ( =L ) + ) E).

(8.90)
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(b) £=5000x 102 (c) t=2500x% 107! (d) £ =2500 x 107!

(f) r=6000x 102 (g) =5000x 107!

|

(i) ¢ = 8000 x 1072 (j) £ = 8000 x 1072 (k) ¢ = 8000 x 107! () ¢ = 8000 x 107!

|

FiGURE 8.5 — uy = ugl), B =01, =2 (olumn 1),8 =1, = 2 (column 2), 8 =
0.1, e = 0.2 (column 3), 8 = 1, £ = 0.2 (column 4).

For all (¢, Yu, Ginn &n) € (Vi) i = 1,2.

Although our theoretical results claimed in the paper actually don’t translate to the
latter scheme, it has the advantages of reducing the computation times (5 unknows to
compute at each time-step instead of 6 unknows for the scheme (8.48)), and the numeri-
cal simulations are consistent with those obtained with (8.48) or in the litterature ([72],
[58]). We choose f(u) = u® + (1 —&)u, f. = f, f- = 0, and, in order to deal with a semi-
implicit scheme, we use the approximation (also used in [58]) : w’, | ~ 3ulu,. — 2u;
and uﬁ b1~ 2Uplpy — u?. Consequently, the last line of the scheme (8.90) reduces to :
(un+1(3u,21 +1- 3)2+ (1-eu, - uz’fh).

First we test the actual Phase-field crystal equation, corresponding to the coefficients
ayy =1 =ap, a;p =2, ay = -2 = a,. The domain Q is the square [0, 67] X [0, 67]. It is
decomposed in 100 x 100 squares, each square being divided along the same diagonal
into two triangles. We choose uf)l) = 0.2 + 0.2 cos(x) cos(y) and vy = 0. The results are
displayed in Figures 8.4 and 8.5. In Figure 8.4, we set 8 = 0.1 and we compare different
solutions u, corresponding to different values of &. The time stepsize 7 is equal to 107! in
the case & = 0.2 and 1072 in the other cases. In Figure 8.5, we vary & (¢ = 0.2 and & = 2)
and B8 (8 = 0.1 and B8 = 1). In Figure 8.6, we vary the coefficients a;;, a», ax, a;, a,
(see Table (8.1)) to illustrate the anisotropy.
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(c) t=100x 1073 () £=100x% 1073

(i) £ =400 x 1073 () £ =400 x 1073 (k) £ =400 x 1073 (1) £ =400 % 1073

FiGure 8.6 — The anisotropic phenomenon, 1y = u(()l) (column 1, 2) , ug = u(()z) (column
3,4),e=02,8=0.1, At = 1073,
TaBLE 8.1 — Coefficients for Figure 8.6 : g =0.1, £ =0.2

Column | ay; | ain | a»n | a; | a, | Initial value | Remark
1 1 1020122 0 x-dir
2 012 |01|2|-=2 Ho cross-dir
3 1 (020122 ) x-dir
4 01 2 (01|22 Ho cross-dir

2. Simulations with y # 0

In this paragraph, the computations have been made with the actual scheme (8.48),
the space V;, (now denoted by Vi, N € IN ) being a space with Fourier spectral basis.
Spectral methods have the advantage of requiring low computation times and the si-
mulations were performed with the software Matlab. More precisely, the domain Q =
[0, 67] X [0, 6] is now decomposed in N2 squares, and the approximate solution (at step
n+1)uy! € Vy is searched as :

N/2-1  Nj2-1

n+l _ an+lan+l ikex ikyy
Uy = E Z I/th l/lky e e,

ke=—N/2 ky=—N/2

We choose again f(u) = u® + (1 — &)u, f. = f, f- = 0, and the nonlinear system at
each step is solved by a Newton algorithm. We take a;y = 1 = ax, app =2, a; = -2 =
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az, uy’ = 0.2 + 0.2 cos(x) cos(y) and vy = 0. The figures 8.7, 8.8, 8.9 and 8.10 display
the solution uy at different times. In Figure 8.7, we take € = 2, § = 0.5 and we vary
v. In Figure 8.8, we take € = 2, 8 = 5 and we vary . In Figure 8.9, we take € = 0.2,
B = 0.5 and we vary 7. In Figure 8.10, we take £ = 0.2, 8 = 5 and we vary .

(g) t=10*x0.005 (h) = 10* x 0.005 @) t=10*x 0.005

Figure 8.7 - N =40,7=0.005,e =2,8=0.5,7 = 0 (column 1), ¥ = 0.01 (column 2),
v = 0.1 (column 3)

8.6 Appendix

We prove (8.66). By choosing ¢, = 1,y;, = 1 in the first and second equations of
(8.48), respectively, we have

n+l _ .n n+1 n
uy up vt 4V
- B
T 2
ﬁv’l“r1 -V Vr11+1 +V] u’l'“ +ul
= — -y .
T 2 2

Solving the linear system gives
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(b) + = 13000 x 0.005 (c) t=13000 x 0.005

(e) t = 15000 X 0.005  (f) ¢ = 15000 x 0.005

(g) t = 17000 x 0.005 (h) ¢+ = 17000 x 0.005 (1) ¢ = 17000 x 0.005

Figure 8.8 — N =40, 7 =0.005,e =2, =15,y = 0 (column 1), vy = 0.01 (column 2),
v = 0.1 (column 3)

()t 1) (4
it AR+ 2ty \ V] 4B+ 2 + ) i)
where
B 4B + 2t — y1? 4Bt
Bl 4yt 48 — 2t — y1?
Now we decompose B into B = B; + B,, with
B - 4B — y1? 0 B - 2t 487
b= 0 48—yt2 > 2T\ —dyr 21 )"

Since B; and B, commute, then

n+l1
Bn+1 _ 2 (l’l + 1)| B”H'l—ij
= : 121 2°
= Jin+1-)!

Based on the signof 1 — 48y : (i) 1 -4By >0, (ii)) 1 —4By =0, (@i) 1 —4By <0,
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(a) t=1000 x 0.05 (b) t = 1000 x 0.05 (c) t =1000 x 0.05

(d) ¢ = 2000 x 0.05 (e) t = 1500 x 0.05 (f) t = 1500 x 0.05

AW

(2) t=3000%0.05  (h) +=2500%0.05 (i) ¢ = 2000 x 0.05

FiGure 89— N =30,7=0.05,=0.2, 8=0.5,y =0 (column 1), y = 0.01 (column
2), v = 0.1(column 3)

we diagonalize B, to obtain Bé :

i Jj
(i) B;:c(pol /?j)c_l,pIZZT 1= 4By, p» = —21/1 - 4By,
2

c- L 2B 2B
‘2/3( VI-4py -1 —W—l)’

ol - 1 ( JI-48y+1 28 )

2148y \ y1-48y-1 -28
(i) B)=0, j>2. (8.91)
(iii) Bgzc(%{ ;)j)c-l, 01 =27i\ABy — 1, pr = —27i~[4By — 1,
2
o] 28 28
T 2B\ iABy —1-1 —iABy—-1-1)

ol - i (—i\/4,87—1—1 —2[;)
248y —1\ —i4By—-1+1 28 |
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(e) t = 3000 x 0.05 (f) t = 3000 x 0.05

"

i
i

"

-
.- n

() t =4000%0.05  (h) r = 4000 x 0.05 (i) 1 = 5000 x 0.05

Figure 8.10— N =30,7=0.05,6=0.2, =5,y =0 (column 1),y = 0.01 (column
2),v = 0.1(column 3)

Therefore,

B! = Jjlin+1-)!

n+l (I’l + 1)' o

> (4B -yt Bl cases (i), (iid),
Jj=0

B + (n+ 1)@B —yt*)'By,  case (ii).

Now we derive the expression of v”“/ 2. For cases (i) and (iii), setting C = (¢ij)1<i j<2 c'=
(dz;)lswsz, then

Jjlin+1-=)!
=cndn[(4B —yt* + p))"™ — (4B — y7* + py)*™ ],

n+1
, (n+1)! . | .
(B"")y = Z —————— (4B -y (cadiip] + c2daip))
=0

n+1
., (n+1)! s ‘ .
(B"") —Z T s = B~ YT endip] + endnp))

n+1

=021d12(4,3—77 +p0)" +szd22(4ﬁ 77' +p2)
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We thus have

1
n+l _ n+1 0 n+1 0
Vi “ @B 27)"“[(8 oy + (BT )]
AB=yT+P1 et BV 021
— d n+l n+
= 11[(4,8 +y7? + 27') 4B + y1> + 27') gl
48—y +pi 4B —y7* + p2
+ d n+1 + d n+1 0.
[c21 12(4,3 Ty 27') (&% 22(4,3 Tyt 27_) vy

Furthermore,

Y2 :CZ]d“[ 4B =y + 1 _ 4B = YT + P2 + 4B -y +p1,
| 2 Lap+y?+20 aBryPa2r C apeyrelr
_(4ﬁ‘772+P2)n] 0 [621d12(4ﬂ—7’T2+p1 ,,+1+621d12 48—yt +p1 ,
AB+y7 + 27 2 4B+ yTi 42t 2 4B +yrr+ 27
(oo BT sy ende By

2 4B+ yrr+ 21 2 4B +vyrr+ 21

For case (ii), since

(B")y = (n+ 1)AB — y2) " (B = —4y(n + D148 — y7°)",
(B, = (4B =y + (n+ DAB — yr*)" (Bo)m
= (4B -yt = 2r(n + DB — y7?)",

then
1
n+l _ n+1 0 n+1 0
w _(4,3 +y72 + 27)nt! [(B")a1ut) + (B )V ] .
—dytn+ DEB -y (4B -yt )" = 2t(n + DU -y ’
= u Vi.
(4B +yrr+ 2ty ! (4B + y72 + 27y !
n+1/2

Therefore, we get the expression of v,

Y

0 v"+1/2 (qn+1 n+1 + q qn)uo
1—4,3 1 22U
————[(V1 =48y - D@} + ¢} + (V1 = 4By + D(5" + g,
4\/1_7 1 2 1
" _4p+2T 1 — 4By —y7? 4B 214148y -
wheredn = 4B + 27 + y1? R 4B + 27 + y7?

(8.93)
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48 — yr2)"
Gﬂﬂ””:2m;fz;f£quAWM+1ﬁﬁ+@w—2ﬂn+n—y¥wﬁ
4B -yt 0 -
-4 + (4B - 2tn — .
2(4B + 27 + 772)"[ ynTuy + (@48 = 2m =y
cem 1 Vi il el . o
i) WP = (i~ g + 5~ dDu
1 2\ 4By —1 3 4 3 4)U
—1 ; 1 n . n n
+ 2 Vi 1 [(V4By — 1 + )@ + g + (VABy — 1 = D) (gl™ + ¢H]Y,
’y p—
where g = P YO+ 2tiABy — 1 48—yt - 21i 4By — 1
- 4B + 21 + y1? 4 48 + 21 + y72 :
n+1/2

We are now ready to estimate v
by (8.93), we deduce

.. For case (i), note that |g;| < 1, |g2| < 1. Then

V=

1_
Vit amW+mmmm+g(2

rols
<

o 1+ 1-4By
ql" + ———

1 —4By 241 —-4By
; 0 1+ 1 —-48y
(Iq:1l" + g2l )ujl + ——
4By 241 —-4By
<2)/+1+ 1 -4py

Ner

Similarly, the following estimate holds for case (iii) :

—— g2l )V
— (q1l" + g2

Y
N
Y
N

g}l + D, g = max{lgul,1gal).
(8.94)

n+1/2

n n Vﬁy n n
vyl < (Ig3l" + lgallui] + (g3l + Igahy

VaBy - 1 Vagy -1 (8.95)

<24+ M),  q=lgs| = lqul.

VA1

We mainly discuss case (ii). Here we will frequently use three inequalities obtained
by the mean value theorem :

n+l

@ @B+71—y)"" —@B-y"™ > 1+ DAB -y, if T <4B;

(b) @B -1 -y — @B -y > —1(n + @B -y, if T > 4B, n is odd;

© @WB—y™)'" —@B -1 -y > 1+ DB -y, if T > 4B,n is even.
(8.96)
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Let

_ AB+T—yT? 4B —yT? 4B -1 —yT?
qs_4,8+27'+y‘r2’%_4ﬁ+27'+77'2’Q7_4ﬁ+2r+772'

Then -1 < g7 <gs < g5 < 1.
If4B8 —y1> > 0,ie. T < 48,0 < gs < g5 < 1, by (8.92), (8.96)(a), we derive

| n+1| <4y(qn+1 n+1)|u0| + zqn+llvll
<Ay |ud) + 245 )
<(4y + 2)lgs" (Il + A1)
If 48 —yr* < 0,ie. T > 4B, -1 < g7 < ge < 0, for n odd, by (8.96)(b),
|V1+1| <4,y(qn+1 n+1)|u0| + 2q7+1|v0|
<4,yqn+l

<(4y + lgr™*" (Il + 1))

] + 245" )

For n even, by (8.96)(c),

|vn+1| <4,y(qn+1 _ qg+l)|u0| _ zqn+l |V1|
<47|Q7|n+1|u1| + 2|q7|n+1|V1|
<(y + D)lgs" (Il + 1)

In short, we have

il < @y + 2™ (168 + 1b21) . g = max{lgsl, lgs).
This yields

11 <oy + 2+ g (i + 1) |

<(y +2)q" (ju] + 1)).

Combining (8.94), (8.95) and (8.97), we deduce (8.66), with the coeflicients satisfying
(8.67).

(8.97)
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9.1 Introduction

MEMS (micro-electromechanical systems) combine electronics and micro-size me-
chanical devices in order to decrease the scaling of electromechanical systems to micro-
scale ; this is similar to NEMS (nano-electromechanical systems) which go to nano-
scale (see [114]). The idea of micro-machineries was presented by Feynman in his
famous lecture (see [48]) at the end of the 1950’s. Several years later, the earliest
micro-machinery, named resonant gate transistor and which served as a tuner for micro-
electronic radios (see [109]), was created by Nathanson and his coworkers (see [110])
at Westinghouse research labs. From then on, MEMS devices have been extensively
applied to many commercial systems, including inkjet printers, MEMS microphones in
portable devices, accelerometers for airbag deployment and electronic stability control
in modern cars, biosensors, silicon pressure sensors, such as disposable blood pressure
sensors, and so on (see more examples in [17] and [114]).

From a mathematical point of view and with the fundamental works by Pelesko and
Bernstein (see [114]), we consider an idealized MEMS device which is described in the
following sketch (Fig. 9.1). The device mainly contains a thin and deformable elastic
membrane with supported boundary and a parallel rigid ground electric plate.

Elastic membrane with
conducting film and
supported boundary

3 )

X

Fixed ground
electric plate

FiGure 9.1 — An idealized MEMS capacitor.

The upper surface of the membrane, which is normally dielectric, is coated with a me-
tallic conducting film and the thickness of the film is considered to be negligible. When
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9.1. Introduction

applying a voltage to the conducting film, the elastic membrane deforms towards the
ground plate. Considering both the dynamics and electrostatic processes (see [46] and
[114] for details) and applying dimensionless analysis, we obtain the following ideali-
zed parabolic MEMS problem :

ou Af(x)

M Ap= 0

or ST oy MO ©.1)
u(t,x) =0 on 9Q; u(0,x)=0 in Q,

and the corresponding elliptic problem :

_ X 0 Q
(1 —u)? ’ (9.2)
ux)=0on 9Q; 0<u<l in Q,

—Au

where u = 1 —d and d corresponds to the dimensionless distance between the membrane
and the plate. Furthermore, f describes the dielectric profile of the elastic membrane and
A > 0 characterizes the applied voltage.

There are several central problems in the study of problem (9.1) and its corres-
ponding elliptic problem (9.2). For instance, when the applied voltage A increases to
some threshold, the device cannot remain stable and a touchdown phenomenon appears,
which means that u goes to 1 in finite time. The threshold value is called the pull-in vol-
tage, denoted by A%, and is defined by

A*(Q, f) = sup{d > 0 | problem (9.2) possesses at least one solution}.

The questions of the evaluation of A* and of how A4, as well as A%, influence the solu-
tions to MEMS problems are among the central questions in the mathematical study
of MEMS. Moreover, we list below the definitions of quenching time and quenching
set (see [51], [52] and [88]) which are also important problems in the study of MEMS
parabolic problem.

Definition 9.1.1. We call T the quenching time of problem (9.1) if T satisfies

T = sup{t > 0| for s € [0, 7], sup u(:,s) < 1}. (9.3)
Q

Definition 9.1.2. We call £ the quenching set of problem (9.1) if X satisfies
Y ={x€Q|AXt,) €QX(0,T), X, = X, t, = 1, u(X,,1,) — 1} (9.4)

Besides, the diversification of materials for the membrane leads to different dielectric
profiles f and corresponding solutions. We refer the readers to [46], [59], [60], [53],
[73]1, [78], [91], [114] and references therein for more details, including the evaluation
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of A%, discussions on the touchdown phenomenon and the existence and properties of the
global solutions to both the elliptic and parabolic problems, as well as the study of the
equations with varying dielectric properties from a theoretical perspective. Furthermore,
we refer the readers to [89] for modified MEMS problems with a non-local term, to
[139] for an advection term and to [24] and references therein for fourth-order problems.
We are interested in this paper in the numerical approximation of problem (9.1). In
particular, we prove that, both for semi-implicit and implicit semi-discrete schemes, the
solutions are monotonically and pointwise convergent to the minimal solution to the
corresponding elliptic partial differential equation, under proper assumptions. We also
study the fully discretized semi-implicit scheme in one space dimension. We finally
give numerical simulations which illustrate the behavior of the solutions, as well as the
touchdown phenomenon, with different schemes and different initial conditions.

9.2 Setting of the problem

We consider the following initial and boundary value problem :

ou _Af(0) .
o Mgy e 9.5)

u(t,x) =0 on 0Q; u0,x)=uy(x) in Q,

where f describes the permittivity profile of the elastic membrane and A > 0 characte-
rizes the applied voltage. We make the following assumptions :
- Qs a bounded and regular domain of RN, N =1, 2 or 3;
- f e C*(Q) for some « € (0, 1] and f satisfies the condition 0 < f < 1, but is not
reduced to the null function.
-up e L2 (Q)and 0 <uy < 1 ae..

In particular, when uy = 0, there exists 4* > 0 such that, if 0 < 4 < A%, then (9.5)
possesses a unique solution which globally converges as t — +oco, monotonically and
pointwise, to its unique minimal steady state. Furthermore, when 4 > A, the unique
solution reaches the singular value 1 in finite time. We refer the interested reader to [46]
for more details.

9.3 The semi-implicit scheme

We set, for 7 > 0 given, t, = nt,n = 0, 1, ---, and consider the semi-implicit
semi-discrete scheme :
Atf(x) .
Upe1 — TAU 1 = U, + L)z in Q,
(I —u,) (9.6)

u,+1 =0 on 0Q,
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9.3. The semi-implicit scheme

where u, . =~ u(t,1, x), u,, =~ u(t,, x) and ug is as in (9.5).

We can note that, if u, € H*(Q) N Hj(Q), then u,, € H*(Q) N H)(Q) and

Atf
_ -1
Upsr = (I —70)" (u, + m),

as long as this makes sense, i.e., u, does not reach the singular value 1. Actually, it
follows from classical elliptic regularity results that, if f € H*(Q), then u,,, €_H4(Q).
Thus, if uy € H*(Q) and f € H*(Q), then u, € H**(Q) and, if u, f € C*(Q), then
u, € C*(Q) (as long as it exists).

We also know that (see [46]), for 0 < A4 < A%, where 4* > 0 denotes the pull-in
voltage and is the same as above, the elliptic problem

_ M@
(1 - w)? ’ 9.7)
0<u<1lin Q and u =0 on 0Q,

— Au

possesses at least one solution u = u,. Furthermore, we assume that u, is the unique
minimal solution (see [46]) to (9.7), i.e., for any other solution v to (9.7), there holds
u (x) < v(x) a.e. in Q. Actually, there exists u € (0, 1) independent of A such that

letall o) < u, YA € [0, 27). (9.8)
We additionally assume that
0 < up(x) < uy(x), ae. x € Q. 9.9)
We first establish a number of propositions and corollaries as follows.
Proposition 9.3.1. There holds, for all n € N U {0},
0 < u,(x) <uy(x), ae. x € Q; (9.10)
in particular, for all n € N U {0}, u,, exists and satisfies
0<u,(x) <1, ae. xeQ.

Proof. We already assumed that (9.9) holds for n = 0. Let us assume that, for a given
n € N U {0}, there holds 0 < u,(x) < uy(x), a.e. x € Q. The function v,.; = U, — U,
satisfies

At f Atf
Vel = TAV1 = Uy — iy + A-uy - <0 (9.11)
and
Voe1 = 0 on 0Q. (9.12)
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Multiplying (9.11) by v’ ., where -* = max {0, -}, we obtain, integrating over Q and by

n+1°

parts and owing to (9.12),

2
||V;:+1|| S 0’
where || - || denotes the L?>-norm. This means that vi,=0and u,, <uyae xeQ.
Alternatively, we can note that
At AT
ul—TAu,lzu4+—f Zun+—f,
(1 —uy)? (1 = u,)?

so that u, is a supersolution to (9.6). Noticing that O is a subsolution to (9.6), it follows
from the sub and supersolutions theorem (see, e.g., [18]) that

0<up <uy, ae xeQ,

which completes the proof. O

Proposition 9.3.2. There holds, for n € N U {0},

1 24t
n - S 1 + — I/ D 9.13
et 1 — uall [+ et ( 1= u)3) llet, — uall (9.13)

where u was given in (9.8), and cy > 0 is the optimal constant in the Poincaré inequality
IVVIIZ > colVIPP, v € Hy(Q). (9.14)

Proof. We have, setting v, = u, —u, and v,y1 = U,y — Uy,

Atf At f 0

Vsl = TAV, ) = v, + - 1
+ + (-, (1—uy)?

Va1 = 0 on 0Q.

We thus deduce that
Atfv, (1 —uy + 1 —u,)
(1 = w2 (1 — uy)?
Atf Atf ]
V.

Vn+l — TAvn+l =V, +

(9.15)

T At 0 — ) (A= w1 —

Multiplying (9.15) by v, and integrating over €2 and by parts, we obtain

2 2
Vaetll™ + TVVaall” = (Vi Viar1))

Atf Atf
+4U—wWLWﬂ+O—%M—mV

]vn,vn+1)),
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which yields, noting that v, and v,,; are nonnegative and recalling that u, < u, and the
assumptions on f,

Wt I + UVt 2 < (Vg V1)) + ((ﬁvn, Vpe1))
21T
= (((1 + m) Vs Vie1))

227
< (1 ta _5)3) [Vallllval-

It thus follows from (9.12) and the Poincaré inequality that

(1 + co)|Vpnll* < (1 +

-
a- ﬁ)3) Vst lllvall.

This completes the proof. O
As a consequence of Proposition 9.3.1, we deduce the following corollary.

Corollary 1. We assume that

1 24T
1 1. 9.16
1+cor( +(1—ﬁ)3)< ©.16)

Then, u, converges to u, in L*(Q) as n — +oo.

Remark 9.3.1. We can note that (9.16) holds for
A< (1 -uy’
—co(1 —m)’.
50

In particular, this estimate does not depend on the choice of T > 0.

Remark 9.3.2. Let us take uy = 0. It is clear that u; > ug = 0. Let us then assume that,
fora givenn € N, u, > u,_1. We have, setting v, = up11 — Uy,

Atf At f .
d-u) - A= u )P >0 in Q 9.17)

Vel = TAV, ) = Uy — Uy +

and
Vel = 0 on 0Q.

Multiplying (9.17) by —v, .|, where -~ = max {0, —-}, we deduce that v, || = 0, whence
Uny1 = Uy Therefore, for every x € Q, the sequence {u,(x)} is monotone increasing and

bounded from above by u,. Hence it converges monotonically as n — +oo.
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Moreover, it is verified numerically (see [46] for details) that, if 4 < A" and is
close to A%, with given f and N, there may exist another stable solution to the elliptic
problem (9.7) which is denoted by u and satisfies u; < uj; < 1. We now assume
that the stationary problem possesses at least 2 solutions u; < u; < 1 and that the
initial condition satisfies uy < up < u}; < 1. Then, we additionally have the following
proposition.

Proposition 9.3.3. We consider the semi-implicit scheme (9.6), with 0 < A < A* and
f satisfying the assumptions mentioned in Section 9.2. Then, if the initial condition
satisfies uy < ug < uy < 1, there holds, for alln e NU{0}, uy < u, <uj <1, ae x€Q.

Proof. We proceed as above. On the one hand, for n = 0, then u, < ug < 1. We further
assume that, for a given n € IN U {0}, there holds u, < u, < 1, a.e. x € Q. Then, the
function v, = u, — u,, satisfies

Aofx)  ATf(x)
(T—w)?  (A—u)

(9.18)

Vil = TAV, =V, +

and
Y+l = 0 on 0Q. (919)

Multiplying (9.18) by v , and integrating over Q and by parts, we obtain, owing to
(9.19),
Vi I+ 7lIVvi, 1P <0, (9.20)

which implies v,,; < 0, 1.e., uy < Uy, a.e. x € Q. On the other hand, we already

assumed that u; < up < u; < 1 and we further assume that, for a given n € IN U {0},
there holds u; < u, < u} <1, a.e. x € Q. Then, the function w,,; = u,,; — uj satisfies

ATf()  ATf()
(1 - Mn)2 (1 - u;)z

Wpel — TAW,.1 = W, + <0 (9.21)

and
wye1 =0 on  9Q. (9.22)

Multiplying (9.21) by w',, and integrating over Q and by parts, we obtain, owing to
(9.22),
Wy IP + 7lIVwy, 1P < 0, (9.23)

n+l

which implies w1 < 0, 1.€., Uy < U}, a.e. x € Q. O

Remark 9.3.3. Let us take uy such that uy < uy < uy < 1. It was numerically verified
that uy < uy < ug < u;. Assuming that, for a givenn € NU{0}, u; < u, < u,_; < u; and
Setting Vp,1 = Uyy1 — Uy, we deduce that

Mf) @ 024)

n+l — An =V, + - =
Vel TR = U T R T (= P
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and

Voe1 =0 on  OQ. (9.25)

Multiplying (9.24) by v’ | and integrating over Q and by parts, we obtain, owing to
(9.25),
Vi IP + 7YV, P <0, (9.26)

whence uy < u,.1 < u, < uj. Therefore, for x € Q, the sequence {u,(x)} is monotonously
decreasing and bounded from below by u,, i.e., it converges as n — +oo.

9.4 The implicit scheme

We consider in this section the implicit semi-discrete scheme : for n € N U {0},

A
wt — o,
(1 = tps1) (9.27)
U,y =0 on 0Q,

Uil — TAU, =

where, again, u,,; =~ u(t,.1, x), u, = u(t,, x). We suppose that the assumptions on Q, f,
and (9.9)-(9.10) still hold.

Proposition 9.4.1. For 0 < u, < u, < 1, a.e. x € Q, problem (9.27) possesses at least
one solution such that

O0<up Sup <1, ae xeQ, (9.28)

where u, is the minimal solution to (9.7).

Proof. Itis obvious that O is a subsolution to problem (9.27). Furthermore, we note that

At f
M)—TAMA = Mﬂ+m
A
Z un + ;f’
(1 —u)?
so that u, is a supersolution to (9.27). The proof is completed. O

Proceeding as in the proof of Proposition 9.3.2 and setting v, = u, — uy, Vye1 =
U,y — Uy, We have
A A
N ©f . 2Tf
(I —u)( = tp1)* (1= w2)*(1 = 1)

Vil = TAV1 = v, Varr in Q,  (9.29)

Voe1 = 0 on 0Q. (9.30)
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Multiplying (9.29) by v, and applying the Poincaré inequality, we obtain

Vast P + cotllVnetl? < (Vs Vi) + ——=5 Var I
(I -u
24T
< AWallllvasrll + WHWHW,
whence )
AT
(1 + CcoT — (1——5)3) Vsl < ([l (9.31)

This yields the following result.

Proposition 9.4.2. We assume that,
1
<50~ )’ co. (9.32)

Then, u, converges to u, in L*(Q) as n — +oo.

Remark 9.4.1. We again take uy = 0. Then, uy > uy. Let us assume that, for a given
n €N, u, > u,_;. Then, the function v,,; = u,.\ — u, satisfies

Atf Atf
Visl — TAvn+l = Uy —Up t -
(1 - un+1)2 (1 - un)z
(9.33)
Atf Atf )
> + Ve 1IN Q
(1 =ty )L = u,)* (1= u)(1 = Upsy)?
and
Vase1 = 0 on 9Q.
Multiplying (9.33) by —v, ., and integrating over € and by parts, we find
_ _ Atf Atf _
2 2 2
+ 7|V < +
UCURELIC ((1 )= (= u)(1 - un+1>2) Pl
Pk S
< mllvmll )
whence )
At _
(1 +coT — m) v, <0. (9.34)
Therefore, for a given A, if T < 1, where 1 is small enough so that
2/1’1'0
1+ - > 0, 9.35
CoTo (1 -1) ( )
then v, ., = 0 and thus u,,; > u,. It thus follows from Propersition 9.4.1 that u,

converges monotonically and pointwise.
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Remark 9.4.2. Multiplying (9.29) by —Av, | and integrating over Q and by parts, we

have 1
T
VYt P+ TlAV P < IVallIIV Yl + mllvn+1llllAvn+1ll- (9.36)
Then, since
IAVIZ > collVVIP, v e H*(Q) N Hy(Q),

applying the Cauchy-Schwarz inequality, we obtain

IVl + ¢ >Vt AV, (9.37)
< NVvllVVall + === IV Vs 1AV,
¢y (1 —u)
whence
24T
Vvl + (cé”r - 1/2—_) 1AV 1]l < 1V,
¢y (1 —uy
Therefore,
21Tt
(1 + coT = ——)VWpatll < [IVW4l. (9.38)
(1-1u)
Finally, if

1
A< 5(1 —u)’co,

or equivalently

1+ 20\ <1
CoT — — ,
Ca-wp
then u, converges to u, in H(‘)(Q) as n — +oo. In particular, in one space dimension, u,
converges to u, in C(QQ) as n — +oo.

9.5 The fully discretized semi-implicit scheme

We only consider the one-dimensional problem in this section. We believe that si-
milar results hold in two-dimensional space and will address this elsewhere.

Let M > 0 be an integer, h = (b — a)/(M + 1) denote the spatial mesh size, and
xi=a+ih,i=0,---, M+ 1. We consider the fully discretized semi-implicit scheme as
follows : for n € IN U {0},

1 1 1 1
Wt —ul ~ ut =2+ ul _ A Pl M-

T h? (1-uh? o (9.39)
”8+1 = ”Xﬂl =0,
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where ! ~ u(", x;). Problem (9.39) can be rewritten equivalently as

At f(x;
%)M”+1 LI B R Arf () (9.40)

(1+2 i h2 i+1 hz -1 — % (l_u?)z‘

We then rewrite (9.40) in vector form as

AU = F(UMH, U’=0, (9.41)

t
where U" = (u’f,ug, .- ,u’/@) and

1+ Zh—T2 —hlz ' + A]“'f(flz)
T T T (1-u7)
-w 1+25 -5 n o ATf(x)
A= . Fumy=| > 0
T T T .
2 1+ 2/72 "2 n Arf(ey)
T T u,, +
2z 1+ 2? M (l—u;{,f)2

We can rewrite (9.41) equivalently as

AU™ = U" + G(U"), (9.42)
where
fx)
(—u)?
J"()Cz)2
GU") = ar| 7
o)
(=u)?
We note that
A=I+ LB,
hl
where
2 -1
-1 2 -1
B= -
-1 2 -1
-1 2

It is well known that A is positive definite, and thus invertible. Furthermore,

2t T/h?
A= (1 * ﬁ)(" 1 +2r/h2c)’

200



9.5. The tully discretized semi-implicit scheme

where

so that

B oV (9.43)
{3 Sl
h = 1+27/h
This yields that A™! > 0.
We now consider the equation
AU* = U* + G(UY), (9.44)
which is the centered difference scheme of the steady state problem (9.7).
Equation (9.44) can be rewritten as
fxD)
(—u)?
A (Xi)2
BU* = an*| 7" |, (9.45)
S ();M)

(1=u;)?

The solvability of the above problem is given in the following theorem.

8(1 — 8)62
Theorem 9.5.1. We assume that 0 < 1 < Eb—;z’ for some 6 € (0,1). Then (9.45)
-a
possesses a solution U* such that 0 < U* < E, where E = (1,1,---, 1)’lxM.

Proof. First note that B is invertible and (as above) B~' > 0. We rewrite (9.45) in the
form
U'=HU), (9.46)

where
f(x1)
(1-u;)?
f(x2)

(-2

HU*) = Ak*B™!

SOem)
(1-u3,)?
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We then consider the sequence
W= HWY, w0 =0. (9.47)
Note that W! exists and, since B~! > 0, W! > 0. Actually, as long as it exists,
Wk > 0.

Furthermore,
Sy fG)

(I=whth2 — (1-wh)2

f(x2) f(x2)

_wkt1\2 k)2
Wk+2_ Wk+l — /thB—l (1=w3™) . (1-wy)

fem) _fGm)

(-whh2 =k, 2

Therefore, since W! > W, we deduce that
Wk > Wk, (9.48)

as long as this makes sense.
Now, recalling the assumptions on f, we have

IHCOl < 1B m]a_lx( (9.49)

o
(1 -xp? .
We denote by D), the determinant of B. It is easy to see that

Dy =2Dy_1 — Dy-».

Therefore, since D, = 3 and D; = 4, it follows that D), = M + 1. It thus follows
from [12] (see also [74]) that B~' is the factorizable matrix {M;;}, M;; = a:b;, i < J,
M,’j = Mj,', where

a,-:i, bj:l_M+1.

We deduce from the structure of B! that

M M
_1 _ ) ) ‘
1B~ [l = max [Z; b;, (Z; a)by, nax_ [b,
= i=

that is to say

i—

J=i

1 M
Clj‘i'd,'ij)],
1

Jj=

M M+1-i
1 _ - —
e e |
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M+1-x

Studying the variations of the function x — x >

, it is easy to see that

max
=2, ,M-1

M+1-i\ (M+1)?
1 < ,
2 8

so that (taking M large enough)

M+1? _ (b-a)

B <
1B 5 o
whence
b —a)’ 1
gt < O3 amax ). 9.50)
i \(I=x)
Let us now assume that
O<y,<1-6,i=1,---, M, 5§€(0,1).
Then, we have
(b —a)?
) S /1.
IHOO < =
Therefore, if
_\s2
1< 8(1 -06)8 ’
(b -a)?
then
IHO )l < 1 = 0.

This yields that {W*} exists for all kK € N U {0} and

1-6
1-6

o<wh<| | (9.51)
1-6

Hence, each component of { W*} is bounded and monotone increasing, and thus converges.
This finishes the proof. O

Remark 9.5.1. Note that, when 6 goes to 0, i.e., the x;’s approach 1, then A goes to 0.
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We assume from now on that the assumptions of Theorem 9.5.1 hold, so that 0 <
U' < U*. Let us assume that 0 < U" < U*. Then, setting V" = U" — U*, there holds

Vn+l — A—l (Vn + G(Un) _ G(U*)) ,

so that (since A~! > 0)
Ul’l+1 S U*.

Furtheremore, since A~ > 0, U™*! > 0. It thus follows that {U"} is well-defined and
0<U"<U, neNuU{0}L
We can also prove, proceeding as above, that
0<U"<U™, neNU{0},
whence {U"} converges.

Remark 9.5.2. We have, for all {V"*'} with vg” =0,

2T 2T
((Avn+l, Vn+l)) :(1 + ﬁ) Z(V?-H)Z -= Z v;z_+lv;!1—11
=1 =1
M-1 M-1
—(1 + l)(( 2 L (] 2)+ o) + lzl ntl _ ntlp2
= 7 Vi Vi V) 7 Vi Vi
=2 =1
M M-1
71 T 71 n
> Z(vj+1)2 i ﬁ Z |V./'+1 _ Vle 2,
j=1 =0
where ((-,-)) denotes the usual Euclidean scalar product, with associated norm || - ||. It
follows from the discrete Poincaré inequality that
M-1 M
2h?
n+1 n+12 n+1,2
which yields
2
AV V) 2 (14— v, (9.52)
(b-a

We now have

AV = v 4 GU™) - GUY),

so that, taking the scalar product with V"*!,
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2
(1 + . )llvn+1”2 < ||Vn + G(U") - G(U*)””VﬂH”

(b-a)?
Therefore,
v\
v <1+ G—ap) VG - GWHI)
b MooV —ut—u) VY
<14 —- V| + A
(b _ (1)2 ” “ T JZ:; ((1 — u7)2(1 - u;)Z
20 \7! 1
<[t+=—""—] [IvI+ 2/IT—||V"||)
(b—a)? (1= U*]l)?
20\ 1 )
<l + —— 1+2lr———— ”Vn”
G-ay (=0l

Therefore, if

(1+ 27 )_1(1+2/l ! )<1
—_— T— .
(b - a)? (1 -U"lw)?

ie. 1< (1—||U"w)/(b— a)?, then {U"} converges to U*.

Remark 9.5.3. The above results, as well as those in the previous sections, can be
improved by taking an assumption on [ of the form

0<f<f,0<f<l.
In particular, in Theorem 9.5.1, we then have the more general assumption

8(1 — 6)5?

0<Af < — 5

which allows for a larger A when f is small.

9.6 Numerical simulations

In this section, we give several numerical simulations which show the behavior of
the solutions u corresponding to different schemes, different A’s and different initial
conditions (see Proposition 9.3.3 and Remark 9.3.3). In particular, it is verified that,
when 0 < 4 < A%, the solutions to problem (9.5) tend to a stable solution u, as time
grows. Furthermore, if 1 > A%, one can observe the so-called touchdown phenomenon.
The numerical simulations are performed with MATLAB.
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9.6.1 The elliptic problem

In this subsection, we study the elliptic problem (9.7). Theoretically, it has been
shown (see, e.g., [46]) that there exists A* depending on the domain Q as well as the
permittivity profile f such that when A4 < A%, problem (9.7) possesses a unique minimal
solution.

The 1D elliptic problem

Employing the continuation method described in Appendix A and considering the
one-dimensional elliptic problem, we draw the branch of solutions u(0) as a function of
A. Setting Q = (=0.5,0.5), M = 199 and f(x) = |2x] or f(x) = 1, we obtain Fig. 9.2

branch:\-u(0),f(x)=|2x| branch: \-u(0),f(x)=1

0.9

0.8}
0.7
06} (\=4, u;(O)) 1 08}
05}
S04l (\'=4.388,u RO)
0.3}

Sosl  (A=1,ut(0) =—=

i 04l (\'=1.4,u,+(0)) ~—
oal (\=4, u, (0)) ]
01] ] 0zl (A=1,u,(0)

) FERE |

: * 5 0 015 *1.5
A A A A

(@) (b)
Figure 9.2 — The branch of solutions u#(0) as a function of 4 : (a) f(x) = |2x]; (b)
fx) = 1.

in which we observe the existence of 4* (when f(x) = |2x|, A* = 4.388, see Fig. 9.2(a),
and, when f = 1, A" = 1.4, see Fig. 9.2(b)) and that, when A < A" but is close to 1*, the
branches display two solutions u,(0) and u;(0). The results are consistent with [46].

The 2D elliptic problem

As far as the 2D elliptic problem is concerned, applying the 5-point centered diffe-
rence to approximate the Laplace operator, we have the discrete scheme :

AR f(x;,y))
— At Uiy Uiy U U+ ———2 =0, 4, j=1, -, M
JJ i-1,j i+1,j i,j—1 i,j+1 >y b ] ) ) )
(1 —I/t,"j)z (953)
Uoj = Upe1,j = Uio = Uipme1 =0, 0, j=0, -+, M+1,

where h = 1/(M + 1) denotes the spatial mesh size of the computational domain Q =
(=0.5,0.5) x (=0.5,0.5) and u; ; ~ u(x;,y;), with (x;,y;) = (=0.5 + ih,-0.5 + jh), i, j =
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9.6. Numerical simulations

0,---,M + 1. Similarly, we display the branch of solutions u(0, 0) as a function of A in
Fig. 9.3(a) for f(x,y) = +/x*> + y* and in Fig. 9.4(a) for f(x,y) = 1; here M = 29. We

branch:\-u(0,0), f(x,y)=sqrt(x2+y?)

0.9 0.7
08y 1 06} ut o= ~<
ol | - ~
. + L 7 . N
05l (A=10,u%(0,0) ‘ | 0.5 S N
|
5057 | 0.4} K y \
S =11. « E / \
S ,.4[(A'=11.011,u,+(0,0)) — osl M .
I g ~.. \
03} i N ~o 0
(A=10,u,(0,0)) = Do o2t Y/ .- o \L
0.2+ b Vav RN
Ly 7 N, 4
0.1t [ 011/ \,\‘
! 1 /,
0 L L 1 1 0 L
0 2 4 6 8 10+ 12 05 0 0.5
A A X
(a) (b)

FiGure 9.3 — The branch of solutions u(0, 0) as a functionof 1: (a) f(x,y) = /x> +y?;
(b) A =10, uy, uy-, and uj.

observe in Fig. 9.3(a) and Fig. 9.4(a) that there exists a maximal value of A, namely,
A* ~ 11.011 when f(x,y) = /x> +y? and A* ~ 2.684 when f(x,y) = 1, such that, if
0 < A < A%, problem (9.7) possesses at least one solution, and, if 4 > A, there does
not exist a solution to the elliptic problem. Simultaneously, we observe that, when A is
less than but is close to A%, there are two values of u(0, 0) which are denoted by u,(0, 0)
and u3(0,0), as illustrated in Fig. 9.3(a) for A = 10 and in Fig. 9.4(a) for 4 = 2.5. In
Fig. 9.3(b) (resp. Fig. 9.4(b)), we display the two corresponding solutions u,, u}; with
A =10 (resp. A = 2.5) and u,-. Furthermore, Fig. 9.4(c) shows four solutions to problem
(9.7) with 4 = 1.6 which become sharper and sharper as the computation goes on.
In the two dimensional simulations, here and below, otherwise specified, the solutions
correspond to the section y = 0.

, branch:\-u(0,0), f(x,y)=1 s A=25 ; A=16
1D X o=
09 c N 0.9 +: ;
05 . N -
08 : ur W o8 AN e
i ¥ A . g
071 (A\=2.5, u}(0,0)) 04 / N o7 S
08 i , u, \ 06
= . i A \
S05/()"=2.684, u_(0,0))" 03 s ~ \ 505
Z04 A i / 0.4
! 02
031 (\=2.5,u,(0,0)) e 03 ;
02 ’ i 01 o2t 4 “\
0.1 ! 01t ;7 \
0 - 0
o 05 1 1516 2 25 " 3 0.5 0 0.5 05 0 05
) A X x
(@ (b) ©

Figure 9.4 — The branch of solutions (0, 0) as a function of 4 : (a) f(x,y) = 1; (b)
A =2.5,uy, uy- and u ; (c) A = 1.6, four corresponding solutions.

The branches and solutions for the one- and two-dimensional elliptic problems are
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helpful in view of the study of the parabolic problems.

9.6.2 The parabolic problem

Wesett" =nt,n=0,---, K, and write the time steps as superscripts and the spatial
nodes as subscripts.

The 1D problem

Setting Q = (—0.5,0.5), we display in Fig. 9.5 the one-dimensional results for
problem (9.5) applying both the semi-implicit and implicit schemes when 4 = 4.0,
f(x) =12x], M = 199 and u_ini = 0 ; these are consistent with the theoretical results.

semi-implicit scheme (u_ini=0) implicit scheme (u_ini=0) convergence of scheme (u_ini=0)

,,,,,

Error
o - v w & o o N

-05 0 05 -0.5 0 05 0 50

100 150 200
x X time steps (n)

() (®) (©

FiGure 9.5 — 1D, 7=0.01. (a) Semi-implicit scheme ; (b) Implicit scheme ; (c) Conver-
gence : error = ||[u" — u,||.

Moreover, the results for the semi-implicit scheme for the initial condition

1
ointwise_ini : ni = ut 4+ —
P _ u_ini_pw IOu/l 0

u, (9.54)
which is larger than u, and less than but close to u} show that the solution decreases
and converges to u, (see Fig. 9.6(a)). In Fig. 9.6(b), the solution for the nonsymmetric
initial condition

u_ini_nonsym = 4(x + 0.33)*(x + 0.5)%x = 0.5], x€[-0.5,0.5], (9.55)

also converges to u,. However, for 4 = 4.45 > A1* and a smaller time step 7 = 0.001, we
observe in Fig. 9.6(c) that, after 2654 steps, there does not exist a stable solution to the
parabolic problem. We have similar results when applying the implicit scheme ; these
are not displayed here.
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semi-implicit (1D pointwise_ini) semi-implicit (1D nonsym) semi-implicit (1D touchdown)

505

(a) (b) (©)

Ficure 9.6 — 1D, M = 199, f(x) = |2x|. (a) T = 0.01, A = 4.0, u_ini =pointwise_ini ;
(b) 7 = 0.01, 2 = 4.0, u_ini is nonsymmetric ; (c) touchdown phenomenon : 1=4.45,
7=0.001.

The 2D problem

semi-implicit scheme (2D global solution) semi-implicit scheme (u_ini=0)

S eI
LRSS N

W /111454052 peSgstittity
I///,,/',:.:.:“\‘\\‘\\\\\\\ \

(@) (b)
0.3 implicit scheme (u_ini=0) 6 convergence of scheme (u_ini=0)
’ —o— semi-implicit
——implicit
0.25 !
0.2+
5015
0.1
0.05} J,”
0]
-0.5 80 100

() (C))

FiGure 9.7 — 2D, 1=10.0, f(x,y) = /x* +y?, 7=0.01, M = 29. (a) The global solution
when ¢t = 1007 ; (b) Semi-implicit scheme ; (c) Implicit scheme ; (d) Convergence.

Applying the centered scheme for the spatial discretization, we have the fully dis-
crete semi-implicit scheme

ATh* f(x;,y;)

2 1 1 1 1 1 2 i»Yj

(h™ = dnyu 7 —Tul =l =Tl — Tl = o+ Ay (9.56)
i,j
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withi, j=1,--- ,M,ug’j = ”7\4+1,j:”20 :ul’.fMH =00, j=0,---,M+1),and n =0,
---, K. Then, one can easily get the two-dimensional fully-discrete implicit scheme,
keeping the same notation and boundary conditions. Here, again, Q = (-0.5,0.5) X
(=0.5,0.5).

In Fig. 9.7, we illustrate the two-dimensional results for 2 = 10.0, f(x,y) = /x% + y?
and u_ini = 0, using both the semi-implicit and implicit schemes, as well as the corres-
ponding convergence. We observe that, with each scheme, the solution increases and

pointwise converges to u,.

semi-implicit scheme (u_ini<u,) implicit scheme (u_ini<u,) convergence of scheme
= - 0.3 4.5

===

4

35

0.2 /,’// \7*\ 3

L2

I S\ &

I/ - NN 1 o\

o1L e N\ ot Jf/ e A 15
G - N W\ A P N ) )

05

. N L’ N

0, 0 0

0.5 0 05 -0.5 0 0.5 0 20 40 60 80 100
x X t

(a) (b) ©

FiGure 9.8 — 2D, 1=10.0, f(x,y) = +/x*>+y?, 7=0.01, M = 29. (a) Semi-implicit
scheme ; (b) Implicit scheme ; (c) Convergence.

As shown in Fig. 9.8, when the initial value u_ini is less than u, (more precisely, we
apply the cubic Lagrange polynomial on five points, (-0.5, -0.5, 0), (-0.5, 0.5, 0), (0, 0,
0.1), (0.5, -0.5, 0) and (0.5, 0.5, 0), to interpolate the initial value u_ini), the solutions
corresponding to the semi-implicit and implicit schemes both increase and converge to
u.

Finally, setting 7 = 0.001, 4 = 11.5 (which is larger than 4*) and M = 35, the
touchdown phenomenon can be observed (see Fig. 9.9).

9.7 The continuation method

In this appendix, we explain how to compute the upper bound on A (namely, the
pull-in voltage 1*) by applying a continuation method (see [5]) which we describe for
the two-dimensional problem. The elliptic system (9.53) can be rewritten as

Hw) =0, (9.57)
where w = (U A)Y and U = (uy 1, - ,up1,- - > Urms -+ »Upy) is the reordered row
vector of the solution to the elliptic problem (9.53). Let H'(#) denote the Jacobian of

H(u) and #(A) denote the tangent vector induced by A, which is defined by
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2D global solution 4 semi-implicit scheme (2D touchdown)
0.9 0.9} Sl |
——1=200
0.8 0.8f o T T T =\ |- 125007
/ N\ - - t=6607
07 0.7 v -} =+ t=6807]
o /'/ LT TTTTTTE ~o t=6837]
////I Il'/l'"“‘ \\““{ : 06 v, AN \‘\‘
T o’u‘ N ‘\\\ 05 505} /' N N
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0 0 -
-0.5 0 0.5
X
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FiGUure 9.9 — 2D, f(x,y) = +/x% + y2, touchdown phenomenon. (a) Global solution when
t = 6837; (b) Section y = 0.

Definition 9.7.1. Let A be an M x (M + 1) matrix with maximal rank. The unique vector
t(A) € RM*! satisfying the conditions

At=0, ||t =1, det( ﬁ ) > 0, (9.58)

is called the tangent vector induced by A, where (-)* denotes the Hermitian transpose.

Here and below, M = M?.
We then use an approximate Euler predictor and Newton-type iterations as corrector
steps, described in the following algorithm, see [5].

Algorithm 1 Continuation Method
Input Npas, € and w such that H(w) =
for n =1, Npas do
Estimate A = H'(w)
Compute A* and the tangent vector #(A)

w:i=w+ et(A) % prediction
while error larger than tolerance and Newton’s iteration step is bounded do
w:i=w-A"H(w) % corrections
end while
end for

In this algorithm, A* denotes the Moore—Penrose inverse of A and e stands for the
current step size. We refer the readers to [14] and [113] for Newton’s method based
on the Moore—Penrose inverse and [6] for a convergence result which ensures that the
above algorithm is applicable and effective under reasonable assumptions. To compute
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At and #(A), we use a QR factorization (see [5] for details), that is to say, A being a
maximal rank M X (M + 1) matrix and A* representing its conjugate transpose, we have

A" = A"AAT) = Q((R(;Z_l), (9.59)

) . R . — — .
with the QR factorization, A* = Q (0*), where Q is an (M +1)X(M+1) orthogonal matrix

and R is a nonsingular M x M upper triangular matrix. Then, we compute #(A) = g,
where g denotes the last column of Q and, in order to satisfy the orientation which has
been defined in [5](2.5), we can choose o = sign(det Q det R).

Prediction-Correction

Corrections _

u(0,0)

Prediction
\

Prediction

A

FiGure 9.10 — The main idea of the continuation method.

The main idea of the continuation method is displayed in Fig. 9.10, using a rough
prediction and several steps of corrections.

212



Chapitre 10

Conclusion générale et perspectives

We introduced and studied several nonlinear partial differential equations associa-
ted to mathematical modeling of phase separation and micro-electromechanical system
(MEMS). For the phase separation, we introduced several models : the higher-order
models with regular potential, the higher-order Allen-Cahn model with logarithmic po-
tential, the higher-order anisotropic models, the higher-order generalized Cahn-Hilliard
equation and the higher-order anisotropic model endowed with an inertial term, na-
mely, the hyperbolic relaxation. In particular, we obtained the well-posedness results
for each model and the existence of global attractors, which are essential in the analysis
of asymptotic behavior. For the micro-electromechanical system, we studied a model
which describes an idealized MEMS capacitor and contains singularity. We conclude
our achievement below :

- In the study of the higher-order models with regular potential, we mainly conside-
red the higher-order Allen-Cahn and Cahn-Hilliard equations endowed with Dirichlet
boundary condition. In particular, for both of the equations, regularity results have been
established, moreover dissipative semigroups and the existence of global attractors. We
also gave the main idea to study the higher-order Cahn-Hilliard equation endowed with
Neumann boundary condition which leads to the conservation of mass.

- We studied the well-posedness results for the higher-order Allen-Cahn models with
logarithmic potential, however not in a classical way, but in a variational sense which
was introduced in [104]. By deriving uniform (with respect to N) a priori estimates
on the solution u" to the approximated problems and passing to the limit N — oo, we
proved the existence and uniqueness of the variational solution, as well as the dissipative
semigroup and the existence of global attractor.

- We then built the higher-order anisotropic models in phase separation to describe
explicitly the anisotropic phenomenon based on the work of G. Caginalp and E. Esen-
turk in [23]. Both for the higher-order anisotropic Allen-Cahn and Cahn-Hilliard equa-
tions with regular potential and Dirichlet/periodic boundary condition, we derived the
a priori estimates and constructed dissipative semigroups, moreover obtained the exis-
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tence of global attractors. Furthermore, we also gave numerical simulations to show the
anisotropic effects intuitively.

- We considered other phenomenon than phase separation by studying the higher-
order generalized Cahn-Hilliard equations, which have applications in biology, image
processing, etc. The a priori estimates have been derived, as well as the regularity results.
We further obtained the dissipative semigroup and the existence of the global attractor
with finite dimension. Moreover, numerical simulations in 2D for the Cahn-Hilliard-
Oono equation, phase field crystal equation and the equation which is modeling tumor
proliferation growth, have illustrated the anisotropy effects.

- An inertial term, i.e., the second order derivative of u with respect to time #, has
been added to the higher-order Cahn-Hilliard equation for the purpose of incorporating
both fast elastic relaxation and slower mass diffusion. We studied the well-posedness
of such a model, in particular, the regularity results, the dissipative semigroup and the
existence of global attractor. In addition, numerical scheme, based on the finite ele-
ment/spectral method in space and second order stable scheme in time, for solving the
modified higher-order generalized (in the sense that an additional term yu has been ad-
ded to the equation) Cahn-Hilliard equation has been developed. Furthermore,the energy
stability results for the numerical scheme have been derived, as well as the existence and
uniqueness of the numerical solution, both for semi-discrete and fully discrete scheme.
Moreover, the numerical simulations have been illustrated to support the numerical ana-
lysis and show anisotropic effects.

- The last model describes the elastic and electrostatic effects in an idealized MEMS
capacitor. Both for semi-implicit and implicit semi-discrete schemes, we proved that,
under proper assumptions, the solutions are monotonically and pointwise convergent
to the steady state, which is actually the minimal solution to the corresponding elliptic
partial differential equation. Moreover, the fully discretized semi-implicit scheme was
studied in 1D and numerical simulations were illustrated to show the behavior of the
solutions which support the theoretical analysis both in 1D and 2D.

Based on what we have done, we provide here some perspectives on these models.

- For the phase separation models, considering the consistence between the mathe-
matical modeling and the physical phenomena, one can further take long-ranged interac-
tions into account. In this situation, the governing equation may turn out to be nonlocal
and the study of nonlocal partial differential equations may be involved in. We refer the
reader to [25, 61, 64, 65, 66] several literatures on nonlocal phase separation models,
which may help to build nonlocal anisotropic models in phase separation.

- For the higher-order models in phase separation, one can further construct the
exponential attractors which are more robust, i.e., not sensitive to perturbation, and can
attract the trajectory much more faster.

- We note that for the higher-order models with logarithmic nonlinear term in Chap-
ter 4, the results are associated to Allen-Cahn equation, so one can consider the well-
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posedness properties for higher-order Cahn-Hilliard equation with logarithmic nonli-
near term. As what mentioned in Chapter 4, when k > 2, the question that whether a
variational solution is a classical (variational) solution or not is an open issue.

- And for the higher-order models (when k > 2), both Allen-Cahn and Cahn-Hilliard,
one can try to analysis whether the global attractors have finite dimension or not. Moreo-
ver, one can further develop more efficient and higher-performance numerical methods
to simulate the higher-order models.

- Finally, as the MEMS machineries are essential components in many commercial
devices, it is necessary to study more realistic models, which may contain fourth order
derivatives, or non-local terms. And since the pull-in voltage is an important factor,
not only in mathematical analysis, but also in the real MEMS machineries, it is also
worth spending efforts on estimating and calculating the pull-in voltage, as well as the
quenching time and quenching set.
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Résumé : Cette these est consacré a I’étude théorique et numérique de plusieurs équations aux
dérivées partielles non linéaires qui apparaissent dans la modélisation de la séparation de phase
et des micro-systemes €lectro-mécaniques (MSEM). Dans la premiere partie, nous étudions des
modeles d’ordre élevé en séparation de phase pour lesquels nous obtenons le caractere bien
posé et la dissipativité, ainsi que I’existence de I’attracteur global et, dans certains cas, des si-
mulations numériques. De maniere plus précise, nous considérons dans cette premiere partie
des modeles de type Allen-Cahn et Cahn-Hilliard d’ordre élevé avec un potentiel régulier et
des modeles de type Allen-Cahn d’ordre €levé avec un potentiel logarithmique. En outre, nous
étudions des modeles anisotropes d’ordre élevé et des généralisations d’ordre élevé de 1’équa-
tion de Cahn-Hilliard avec des applications en biologie, traitement d’images, etc. Nous étudions
également la relaxation hyperbolique d’équations de Cahn-Hilliard anisotropes d’ordre élevé.
Dans la seconde partie, nous proposons des schémas semi-discrets semi-implicites et implicites
et totalement discrétisés afin de résoudre 1’équation aux dérivées partielles non linéaire décri-
vant a la fois les effets élastiques et électrostatiques de condensateurs MSEM. Nous faisons
une analyse théorique de ces schémas et de la convergence sous certaines conditions. De plus,
plusieurs simulations numériques illustrent et appuient les résultats théoriques.

Mots clés : séparation de phase, équations d’Allen-Cahn et Cahn-Hilliard, anisotropie, mo-
deles d’ordre élevé, caractere bien posé, attracteur global, micro-systemes €lectro-mécaniques
(MSEM), schémas semi-implicites et implicites, simulations numériques

Abstract : This thesis is devoted to the theoretical and numerical study of several nonlinear
partial differential equations, which occur in the mathematical modeling of phase separation
and micro-electromechanical system (MEMS). In the first part, we study higher-order phase
separation models for which we obtain well-posedness and dissipativity results, together with
the existence of global attractors and, in certain cases, numerical simulations. More precisely,
we consider in this first part higher-order Allen-Cahn and Cahn-Hilliard equations with a regu-
lar potential and higher-order Allen-Cahn equation with a logarithmic potential. Moreover, we
study higher-order anisotropic models and higher-order generalized Cahn-Hilliard equations,
which have applications in biology, image processing, etc. We also consider the hyperbolic re-
laxation of higher-order anisotropic Cahn-Hilliard equations. In the second part, we develop
semi-implicit and implicit semi-discrete, as well as fully discrete, schemes for solving the non-
linear partial differential equation, which describes both the elastic and electrostatic effects in
an idealized MEMS capacitor. We analyze theoretically the stability of these schemes and the
convergence under certain assumptions. Furthermore, several numerical simulations illustrate
and support the theoretical results.

Keywords : phase separation, Allen-Cahn and Cahn-Hilliard equations, higher-order models,
anisotropy, well-posedness, global attractor, micro-electromechanical system (MEMS), semi-
implicit and implicit schemes, numerical simulations
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